This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism part of the op functor on functor categories. Lemma for fucoppc . (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opf2fval.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| opf2fval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| opf2fval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | opf2fval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf2fval.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| 2 | opf2fval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 3 | opf2fval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) | |
| 5 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) | |
| 6 | 4 5 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑦 𝑁 𝑥 ) = ( 𝑌 𝑁 𝑋 ) ) |
| 7 | 6 | reseq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( I ↾ ( 𝑦 𝑁 𝑥 ) ) = ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ) |
| 8 | ovexd | ⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) ∈ V ) | |
| 9 | resiexg | ⊢ ( ( 𝑌 𝑁 𝑋 ) ∈ V → ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ∈ V ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ∈ V ) |
| 11 | 1 7 2 3 10 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( I ↾ ( 𝑌 𝑁 𝑋 ) ) ) |