This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of functors is compatible with the category of opposite functors in terms of composition. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | ||
| fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | ||
| fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | ||
| fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | ||
| fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | ||
| fucoppcco.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ) | ||
| fucoppcco.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) ) | ||
| Assertion | fucoppcco | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐵 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| 4 | fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | |
| 5 | fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | |
| 6 | fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 7 | fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | |
| 8 | fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| 9 | fucoppcco.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ) | |
| 10 | fucoppcco.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) ) | |
| 11 | eqid | ⊢ ( 𝑂 Nat 𝑃 ) = ( 𝑂 Nat 𝑃 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 13 | 1 12 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 14 | eqid | ⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) | |
| 15 | eqid | ⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) | |
| 16 | 3 6 | fuchom | ⊢ 𝑁 = ( Hom ‘ 𝑄 ) |
| 17 | 16 4 | oppchom | ⊢ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) = ( 𝑌 𝑁 𝑋 ) |
| 18 | 9 17 | eleqtrdi | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑌 𝑁 𝑋 ) ) |
| 19 | 6 | natrcl | ⊢ ( 𝐴 ∈ ( 𝑌 𝑁 𝑋 ) → ( 𝑌 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 21 | 20 | simprd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) |
| 22 | 20 | simpld | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) |
| 23 | 1 2 6 7 21 22 | fucoppclem | ⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 24 | 18 23 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝐹 ‘ 𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 25 | 16 4 | oppchom | ⊢ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) = ( 𝑍 𝑁 𝑌 ) |
| 26 | 10 25 | eleqtrdi | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝑍 𝑁 𝑌 ) ) |
| 27 | 6 | natrcl | ⊢ ( 𝐵 ∈ ( 𝑍 𝑁 𝑌 ) → ( 𝑍 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 28 | 26 27 | syl | ⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 29 | 28 | simpld | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐶 Func 𝐷 ) ) |
| 30 | 1 2 6 7 22 29 | fucoppclem | ⊢ ( 𝜑 → ( 𝑍 𝑁 𝑌 ) = ( ( 𝐹 ‘ 𝑌 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑍 ) ) ) |
| 31 | 26 30 | eleqtrd | ⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝐹 ‘ 𝑌 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑍 ) ) ) |
| 32 | 5 11 13 14 15 24 31 | fucco | ⊢ ( 𝜑 → ( 𝐵 ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) 𝐴 ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) ) |
| 33 | eqidd | ⊢ ( 𝜑 → 𝐵 = 𝐵 ) | |
| 34 | 8 22 29 33 26 | opf2 | ⊢ ( 𝜑 → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐵 ) = 𝐵 ) |
| 35 | eqidd | ⊢ ( 𝜑 → 𝐴 = 𝐴 ) | |
| 36 | 8 21 22 35 18 | opf2 | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) = 𝐴 ) |
| 37 | 34 36 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐵 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) = ( 𝐵 ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) 𝐴 ) ) |
| 38 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 39 | eqid | ⊢ ( comp ‘ 𝑄 ) = ( comp ‘ 𝑄 ) | |
| 40 | 3 6 12 38 39 26 18 | fucco | ⊢ ( 𝜑 → ( 𝐴 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ 𝑄 ) 𝑋 ) 𝐵 ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐴 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 41 | 3 | fucbas | ⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) |
| 42 | 41 39 4 21 22 29 | oppcco | ⊢ ( 𝜑 → ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) = ( 𝐴 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ 𝑄 ) 𝑋 ) 𝐵 ) ) |
| 43 | 3 6 39 26 18 | fuccocl | ⊢ ( 𝜑 → ( 𝐴 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ 𝑄 ) 𝑋 ) 𝐵 ) ∈ ( 𝑍 𝑁 𝑋 ) ) |
| 44 | 8 21 29 42 43 | opf2 | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) ) = ( 𝐴 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ 𝑄 ) 𝑋 ) 𝐵 ) ) |
| 45 | 7 21 | opf11 | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 1st ‘ 𝑋 ) ) |
| 46 | 45 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) |
| 47 | 7 22 | opf11 | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) = ( 1st ‘ 𝑌 ) ) |
| 48 | 47 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) ) |
| 49 | 46 48 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 = 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ) |
| 50 | 7 29 | opf11 | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) = ( 1st ‘ 𝑍 ) ) |
| 51 | 50 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) |
| 52 | 49 51 | oveq12d | ⊢ ( 𝜑 → ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) = ( 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) ) |
| 53 | 52 | oveqd | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) = ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) = ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) |
| 55 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 56 | 21 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑋 ) ) |
| 57 | 12 55 56 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 58 | 57 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 59 | 22 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑌 ) ) |
| 60 | 12 55 59 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 61 | 60 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 62 | 29 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝑍 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑍 ) ) |
| 63 | 12 55 62 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝑍 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 64 | 63 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 65 | 55 38 2 58 61 64 | oppcco | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) = ( ( 𝐴 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) ( 𝐵 ‘ 𝑧 ) ) ) |
| 66 | 54 65 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) = ( ( 𝐴 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) ( 𝐵 ‘ 𝑧 ) ) ) |
| 67 | 66 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐴 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 68 | 40 44 67 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) ) |
| 69 | 32 37 68 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐵 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) ) |