This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | ||
| fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | ||
| fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | ||
| fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | ||
| fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | ||
| fucoppcid.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| Assertion | fucoppcid | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| 4 | fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | |
| 5 | fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | |
| 6 | fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 7 | fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | |
| 8 | fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| 9 | fucoppcid.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 10 | 9 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑋 ) ) |
| 11 | 10 | funcrcl3 | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 12 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 13 | 2 12 | oppcid | ⊢ ( 𝐷 ∈ Cat → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝜑 → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 15 | 7 9 | opf11 | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 1st ‘ 𝑋 ) ) |
| 16 | 14 15 | coeq12d | ⊢ ( 𝜑 → ( ( Id ‘ 𝑃 ) ∘ ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ) |
| 17 | eqid | ⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) | |
| 18 | eqid | ⊢ ( Id ‘ 𝑃 ) = ( Id ‘ 𝑃 ) | |
| 19 | 1 2 | oppff1 | ⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) |
| 20 | f1f | ⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) |
| 22 | 7 | feq1d | ⊢ ( 𝜑 → ( 𝐹 : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ↔ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) ) |
| 23 | 21 22 | mpbiri | ⊢ ( 𝜑 → 𝐹 : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) |
| 24 | 23 9 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 25 | 5 17 18 24 | fucid | ⊢ ( 𝜑 → ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( ( Id ‘ 𝑃 ) ∘ ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 26 | 10 | funcrcl2 | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 27 | 3 26 11 | fuccat | ⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 28 | eqid | ⊢ ( Id ‘ 𝑄 ) = ( Id ‘ 𝑄 ) | |
| 29 | 4 28 | oppcid | ⊢ ( 𝑄 ∈ Cat → ( Id ‘ 𝑅 ) = ( Id ‘ 𝑄 ) ) |
| 30 | 27 29 | syl | ⊢ ( 𝜑 → ( Id ‘ 𝑅 ) = ( Id ‘ 𝑄 ) ) |
| 31 | 30 | fveq1d | ⊢ ( 𝜑 → ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) = ( ( Id ‘ 𝑄 ) ‘ 𝑋 ) ) |
| 32 | 3 28 12 9 | fucid | ⊢ ( 𝜑 → ( ( Id ‘ 𝑄 ) ‘ 𝑋 ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ) |
| 33 | 31 32 | eqtrd | ⊢ ( 𝜑 → ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ) |
| 34 | 3 6 12 9 | fucidcl | ⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ∈ ( 𝑋 𝑁 𝑋 ) ) |
| 35 | 8 9 9 33 34 | opf2 | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ) |
| 36 | 16 25 35 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |