This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fucoppc . (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppclem.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fucoppclem.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| fucoppclem.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| fucoppclem.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | ||
| fucoppclem.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| fucoppclem.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| Assertion | fucoppclem | ⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppclem.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fucoppclem.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | fucoppclem.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 4 | fucoppclem.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | |
| 5 | fucoppclem.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 6 | fucoppclem.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 7 | eqid | ⊢ ( 𝑂 Nat 𝑃 ) = ( 𝑂 Nat 𝑃 ) | |
| 8 | 4 | fveq1d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑌 ) ) |
| 9 | 6 | fvresd | ⊢ ( 𝜑 → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑌 ) = ( oppFunc ‘ 𝑌 ) ) |
| 10 | 8 9 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = ( oppFunc ‘ 𝑌 ) ) |
| 11 | 4 | fveq1d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑋 ) ) |
| 12 | 5 | fvresd | ⊢ ( 𝜑 → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑋 ) = ( oppFunc ‘ 𝑋 ) ) |
| 13 | 11 12 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( oppFunc ‘ 𝑋 ) ) |
| 14 | 5 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑋 ) ) |
| 15 | 14 | funcrcl2 | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 16 | 14 | funcrcl3 | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 17 | 1 2 3 7 10 13 15 16 | natoppfb | ⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑌 ) ) ) |