This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A fully faithful functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | ||
| fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | ||
| fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | ||
| fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | ||
| fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | ||
| fucoppcffth.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| fucoppcffth.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| Assertion | fucoppcffth | ⊢ ( 𝜑 → 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| 4 | fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | |
| 5 | fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | |
| 6 | fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 7 | fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | |
| 8 | fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| 9 | fucoppcffth.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 10 | fucoppcffth.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 11 | eqid | ⊢ ( CatCat ‘ { 𝑅 , 𝑆 } ) = ( CatCat ‘ { 𝑅 , 𝑆 } ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) = ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) | |
| 15 | eqid | ⊢ ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) = ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) | |
| 16 | 3 9 10 | fuccat | ⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 17 | 4 | oppccat | ⊢ ( 𝑄 ∈ Cat → 𝑅 ∈ Cat ) |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Cat ) |
| 19 | prid1g | ⊢ ( 𝑅 ∈ Cat → 𝑅 ∈ { 𝑅 , 𝑆 } ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝑅 ∈ { 𝑅 , 𝑆 } ) |
| 21 | 20 18 | elind | ⊢ ( 𝜑 → 𝑅 ∈ ( { 𝑅 , 𝑆 } ∩ Cat ) ) |
| 22 | prex | ⊢ { 𝑅 , 𝑆 } ∈ V | |
| 23 | 22 | a1i | ⊢ ( 𝜑 → { 𝑅 , 𝑆 } ∈ V ) |
| 24 | 11 15 23 | catcbas | ⊢ ( 𝜑 → ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) = ( { 𝑅 , 𝑆 } ∩ Cat ) ) |
| 25 | 21 24 | eleqtrrd | ⊢ ( 𝜑 → 𝑅 ∈ ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) ) |
| 26 | 1 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 27 | 9 26 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 28 | 2 | oppccat | ⊢ ( 𝐷 ∈ Cat → 𝑃 ∈ Cat ) |
| 29 | 10 28 | syl | ⊢ ( 𝜑 → 𝑃 ∈ Cat ) |
| 30 | 5 27 29 | fuccat | ⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
| 31 | prid2g | ⊢ ( 𝑆 ∈ Cat → 𝑆 ∈ { 𝑅 , 𝑆 } ) | |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → 𝑆 ∈ { 𝑅 , 𝑆 } ) |
| 33 | 32 30 | elind | ⊢ ( 𝜑 → 𝑆 ∈ ( { 𝑅 , 𝑆 } ∩ Cat ) ) |
| 34 | 33 24 | eleqtrrd | ⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) ) |
| 35 | 1 2 3 4 5 6 7 8 11 15 14 9 10 25 34 | fucoppc | ⊢ ( 𝜑 → 𝐹 ( 𝑅 ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) 𝑆 ) 𝐺 ) |
| 36 | df-br | ⊢ ( 𝐹 ( 𝑅 ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) 𝑆 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) 𝑆 ) ) | |
| 37 | 35 36 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝑅 ( Iso ‘ ( CatCat ‘ { 𝑅 , 𝑆 } ) ) 𝑆 ) ) |
| 38 | 11 12 13 14 37 | catcisoi | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ∧ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ) |
| 39 | 38 | simpld | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ) |
| 40 | df-br | ⊢ ( 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ) | |
| 41 | 39 40 | sylibr | ⊢ ( 𝜑 → 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ) |