This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppff1.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppff1.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| oppff1o.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| oppff1o.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| Assertion | oppff1o | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppff1.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppff1.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | oppff1o.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | oppff1o.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | 1 2 | oppff1 | ⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) ) |
| 7 | f1f | ⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) |
| 9 | fveq2 | ⊢ ( 𝑔 = ( oppFunc ‘ 𝑓 ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ ( oppFunc ‘ 𝑓 ) ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑔 = ( oppFunc ‘ 𝑓 ) → ( 𝑓 = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) ↔ 𝑓 = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ ( oppFunc ‘ 𝑓 ) ) ) ) |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) → 𝐶 ∈ 𝑉 ) |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) → 𝐷 ∈ 𝑊 ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) → 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) | |
| 14 | 1 2 11 12 13 | 2oppffunc | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) → ( oppFunc ‘ 𝑓 ) ∈ ( 𝐶 Func 𝐷 ) ) |
| 15 | 14 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) → ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ ( oppFunc ‘ 𝑓 ) ) = ( oppFunc ‘ ( oppFunc ‘ 𝑓 ) ) ) |
| 16 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 17 | eqid | ⊢ ( oppFunc ‘ 𝑓 ) = ( oppFunc ‘ 𝑓 ) | |
| 18 | 14 16 17 | 2oppf | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) → ( oppFunc ‘ ( oppFunc ‘ 𝑓 ) ) = 𝑓 ) |
| 19 | 15 18 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) → 𝑓 = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ ( oppFunc ‘ 𝑓 ) ) ) |
| 20 | 10 14 19 | rspcedvdw | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ) → ∃ 𝑔 ∈ ( 𝐶 Func 𝐷 ) 𝑓 = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) ) |
| 21 | 20 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ∃ 𝑔 ∈ ( 𝐶 Func 𝐷 ) 𝑓 = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) ) |
| 22 | dffo3 | ⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –onto→ ( 𝑂 Func 𝑃 ) ↔ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ∧ ∀ 𝑓 ∈ ( 𝑂 Func 𝑃 ) ∃ 𝑔 ∈ ( 𝐶 Func 𝐷 ) 𝑓 = ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ‘ 𝑔 ) ) ) | |
| 23 | 8 21 22 | sylanbrc | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –onto→ ( 𝑂 Func 𝑃 ) ) |
| 24 | df-f1o | ⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ↔ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) ∧ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –onto→ ( 𝑂 Func 𝑃 ) ) ) | |
| 25 | 6 23 24 | sylanbrc | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1-onto→ ( 𝑂 Func 𝑃 ) ) |