This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 18-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | oppcbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcbas.2 | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 4 | slotsbhcdif | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 5 | 4 | simp1i | ⊢ ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) |
| 6 | 3 5 | setsnid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) ) |
| 7 | 4 | simp2i | ⊢ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) |
| 8 | 3 7 | setsnid | ⊢ ( Base ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 9 | 6 8 | eqtri | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 13 | 10 11 12 1 | oppcval | ⊢ ( 𝐶 ∈ V → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐶 ∈ V → ( Base ‘ 𝑂 ) = ( Base ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝐶 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) ) |
| 15 | 9 14 | eqtr4id | ⊢ ( 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
| 16 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 17 | 16 | eqcomi | ⊢ ( Base ‘ ∅ ) = ∅ |
| 18 | 17 1 | fveqprc | ⊢ ( ¬ 𝐶 ∈ V → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
| 19 | 15 18 | pm2.61i | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 20 | 2 19 | eqtri | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |