This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg ). (Contributed by NM, 13-Jan-2007) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resiexg | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idssxp | ⊢ ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) | |
| 2 | sqxpexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × 𝐴 ) ∈ V ) | |
| 3 | ssexg | ⊢ ( ( ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( I ↾ 𝐴 ) ∈ V ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ V ) |