This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A double commutation of divisor sums based on fsumdvdsdiag . Note that A depends on both j and k . (Contributed by Mario Carneiro, 13-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumdvdscom.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| fsumdvdscom.2 | ⊢ ( 𝑗 = ( 𝑘 · 𝑚 ) → 𝐴 = 𝐵 ) | ||
| fsumdvdscom.3 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } ) ) → 𝐴 ∈ ℂ ) | ||
| Assertion | fsumdvdscom | ⊢ ( 𝜑 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumdvdscom.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 2 | fsumdvdscom.2 | ⊢ ( 𝑗 = ( 𝑘 · 𝑚 ) → 𝐴 = 𝐵 ) | |
| 3 | fsumdvdscom.3 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } ) ) → 𝐴 ∈ ℂ ) | |
| 4 | breq2 | ⊢ ( 𝑗 = 𝑢 → ( 𝑥 ∥ 𝑗 ↔ 𝑥 ∥ 𝑢 ) ) | |
| 5 | 4 | rabbidv | ⊢ ( 𝑗 = 𝑢 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) |
| 6 | csbeq1a | ⊢ ( 𝑗 = 𝑢 → 𝐴 = ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑗 = 𝑢 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } ) → 𝐴 = ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) |
| 8 | 5 7 | sumeq12dv | ⊢ ( 𝑗 = 𝑢 → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ) |
| 9 | nfcv | ⊢ Ⅎ 𝑢 Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 | |
| 10 | nfcv | ⊢ Ⅎ 𝑗 { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } | |
| 11 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑢 / 𝑗 ⦌ 𝐴 | |
| 12 | 10 11 | nfsum | ⊢ Ⅎ 𝑗 Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 |
| 13 | 8 9 12 | cbvsum | ⊢ Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 |
| 14 | breq2 | ⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( 𝑥 ∥ 𝑢 ↔ 𝑥 ∥ ( 𝑁 / 𝑣 ) ) ) | |
| 15 | 14 | rabbidv | ⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) |
| 16 | csbeq1 | ⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑢 = ( 𝑁 / 𝑣 ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 18 | 15 17 | sumeq12dv | ⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 19 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 20 | dvdsssfz1 | ⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) | |
| 21 | 1 20 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
| 22 | 19 21 | ssfid | ⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∈ Fin ) |
| 23 | eqid | ⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | |
| 24 | eqid | ⊢ ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) | |
| 25 | 23 24 | dvdsflip | ⊢ ( 𝑁 ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 26 | 1 25 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 27 | oveq2 | ⊢ ( 𝑧 = 𝑣 → ( 𝑁 / 𝑧 ) = ( 𝑁 / 𝑣 ) ) | |
| 28 | ovex | ⊢ ( 𝑁 / 𝑧 ) ∈ V | |
| 29 | 27 24 28 | fvmpt3i | ⊢ ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑣 ) = ( 𝑁 / 𝑣 ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↦ ( 𝑁 / 𝑧 ) ) ‘ 𝑣 ) = ( 𝑁 / 𝑣 ) ) |
| 31 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... 𝑢 ) ∈ Fin ) | |
| 32 | ssrab2 | ⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ℕ | |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) | |
| 34 | 32 33 | sselid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑢 ∈ ℕ ) |
| 35 | dvdsssfz1 | ⊢ ( 𝑢 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⊆ ( 1 ... 𝑢 ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⊆ ( 1 ... 𝑢 ) ) |
| 37 | 31 36 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ∈ Fin ) |
| 38 | 3 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ) |
| 39 | nfv | ⊢ Ⅎ 𝑢 ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ | |
| 40 | 11 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ |
| 41 | 10 40 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ |
| 42 | 6 | eleq1d | ⊢ ( 𝑗 = 𝑢 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 43 | 5 42 | raleqbidv | ⊢ ( 𝑗 = 𝑢 → ( ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ↔ ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 44 | 39 41 43 | cbvralw | ⊢ ( ∀ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 ∈ ℂ ↔ ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 45 | 38 44 | sylib | ⊢ ( 𝜑 → ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 46 | 45 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 47 | 46 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ) → ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 48 | 37 47 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 49 | 18 22 26 30 48 | fsumf1o | ⊢ ( 𝜑 → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 50 | 16 | eleq1d | ⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ↔ ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 51 | 15 50 | raleqbidv | ⊢ ( 𝑢 = ( 𝑁 / 𝑣 ) → ( ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ↔ ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 52 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 53 | dvdsdivcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑣 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) | |
| 54 | 1 53 | sylan | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑣 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 55 | 51 52 54 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ∀ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 56 | 55 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 57 | 56 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 58 | 1 57 | fsumdvdsdiag | ⊢ ( 𝜑 → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ) |
| 59 | oveq2 | ⊢ ( 𝑣 = ( ( 𝑁 / 𝑘 ) / 𝑚 ) → ( 𝑁 / 𝑣 ) = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) | |
| 60 | 59 | csbeq1d | ⊢ ( 𝑣 = ( ( 𝑁 / 𝑘 ) / 𝑚 ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 ) |
| 61 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 1 ... ( 𝑁 / 𝑘 ) ) ∈ Fin ) | |
| 62 | dvdsdivcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) | |
| 63 | 32 62 | sselid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ ℕ ) |
| 64 | 1 63 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑘 ) ∈ ℕ ) |
| 65 | dvdsssfz1 | ⊢ ( ( 𝑁 / 𝑘 ) ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⊆ ( 1 ... ( 𝑁 / 𝑘 ) ) ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⊆ ( 1 ... ( 𝑁 / 𝑘 ) ) ) |
| 67 | 61 66 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ∈ Fin ) |
| 68 | eqid | ⊢ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } | |
| 69 | eqid | ⊢ ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) = ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) | |
| 70 | 68 69 | dvdsflip | ⊢ ( ( 𝑁 / 𝑘 ) ∈ ℕ → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) |
| 71 | 64 70 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) : { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) |
| 72 | oveq2 | ⊢ ( 𝑧 = 𝑚 → ( ( 𝑁 / 𝑘 ) / 𝑧 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) | |
| 73 | ovex | ⊢ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ∈ V | |
| 74 | 72 69 73 | fvmpt3i | ⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) |
| 75 | 74 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ↦ ( ( 𝑁 / 𝑘 ) / 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) |
| 76 | 1 | fsumdvdsdiaglem | ⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) ) ) |
| 77 | 57 | ex | ⊢ ( 𝜑 → ( ( 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑣 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 78 | 76 77 | syld | ⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 79 | 78 | impl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 80 | 60 67 71 75 79 | fsumf1o | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 ) |
| 81 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ∈ V ) | |
| 82 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 83 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 84 | 82 83 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 85 | 1 84 | syl | ⊢ ( 𝜑 → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 87 | 86 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑁 ∈ ℂ ) |
| 88 | elrabi | ⊢ ( 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → 𝑘 ∈ ℕ ) | |
| 89 | 88 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → 𝑘 ∈ ℕ ) |
| 90 | 89 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑘 ∈ ℕ ) |
| 91 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 92 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 93 | 91 92 | jca | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
| 94 | 90 93 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ) |
| 95 | elrabi | ⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } → 𝑚 ∈ ℕ ) | |
| 96 | 95 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → 𝑚 ∈ ℕ ) |
| 97 | nncn | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) | |
| 98 | nnne0 | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) | |
| 99 | 97 98 | jca | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
| 100 | 96 99 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
| 101 | divdiv1 | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑘 ∈ ℂ ∧ 𝑘 ≠ 0 ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( ( 𝑁 / 𝑘 ) / 𝑚 ) = ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) | |
| 102 | 87 94 100 101 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑁 / 𝑘 ) / 𝑚 ) = ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) |
| 103 | 102 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) = ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) ) |
| 104 | nnmulcl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑘 · 𝑚 ) ∈ ℕ ) | |
| 105 | 89 95 104 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑘 · 𝑚 ) ∈ ℕ ) |
| 106 | nncn | ⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( 𝑘 · 𝑚 ) ∈ ℂ ) | |
| 107 | nnne0 | ⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( 𝑘 · 𝑚 ) ≠ 0 ) | |
| 108 | 106 107 | jca | ⊢ ( ( 𝑘 · 𝑚 ) ∈ ℕ → ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) |
| 109 | 105 108 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) |
| 110 | ddcan | ⊢ ( ( ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ∧ ( ( 𝑘 · 𝑚 ) ∈ ℂ ∧ ( 𝑘 · 𝑚 ) ≠ 0 ) ) → ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) = ( 𝑘 · 𝑚 ) ) | |
| 111 | 86 109 110 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( 𝑁 / ( 𝑘 · 𝑚 ) ) ) = ( 𝑘 · 𝑚 ) ) |
| 112 | 103 111 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) = ( 𝑘 · 𝑚 ) ) |
| 113 | 112 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ( 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ↔ 𝑗 = ( 𝑘 · 𝑚 ) ) ) |
| 114 | 113 | biimpa | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ∧ 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) → 𝑗 = ( 𝑘 · 𝑚 ) ) |
| 115 | 114 2 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) ∧ 𝑗 = ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) ) → 𝐴 = 𝐵 ) |
| 116 | 81 115 | csbied | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ) → ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 = 𝐵 ) |
| 117 | 116 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / ( ( 𝑁 / 𝑘 ) / 𝑚 ) ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| 118 | 80 117 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| 119 | 118 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑣 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } ⦋ ( 𝑁 / 𝑣 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| 120 | 49 58 119 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑢 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑢 } ⦋ 𝑢 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |
| 121 | 13 120 | eqtrid | ⊢ ( 𝜑 → Σ 𝑗 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑗 } 𝐴 = Σ 𝑘 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } Σ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑁 / 𝑘 ) } 𝐵 ) |