This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvdsppwf1o.f | ⊢ 𝐹 = ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑛 ) ) | |
| Assertion | dvdsppwf1o | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐹 : ( 0 ... 𝐴 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsppwf1o.f | ⊢ 𝐹 = ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑛 ) ) | |
| 2 | breq1 | ⊢ ( 𝑥 = ( 𝑃 ↑ 𝑛 ) → ( 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) ↔ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) | |
| 3 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
| 5 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... 𝐴 ) → 𝑛 ∈ ℕ0 ) | |
| 6 | nnexpcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ ) |
| 8 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → 𝑃 ∈ ℤ ) |
| 10 | 5 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → 𝑛 ∈ ℕ0 ) |
| 11 | elfzuz3 | ⊢ ( 𝑛 ∈ ( 0 ... 𝐴 ) → 𝐴 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 13 | dvdsexp | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝐴 ) ) | |
| 14 | 9 10 12 13 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
| 15 | 2 7 14 | elrabd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → ( 𝑃 ↑ 𝑛 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) |
| 16 | simpl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) | |
| 17 | elrabi | ⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } → 𝑚 ∈ ℕ ) | |
| 18 | pccl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → ( 𝑃 pCnt 𝑚 ) ∈ ℕ0 ) | |
| 19 | 16 17 18 | syl2an | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt 𝑚 ) ∈ ℕ0 ) |
| 20 | 16 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑃 ∈ ℙ ) |
| 21 | 17 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑚 ∈ ℕ ) |
| 22 | 21 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑚 ∈ ℤ ) |
| 23 | 8 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑃 ∈ ℤ ) |
| 24 | simplr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝐴 ∈ ℕ0 ) | |
| 25 | zexpcl | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) |
| 27 | breq1 | ⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) ↔ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) ) | |
| 28 | 27 | elrab | ⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 29 | 28 | simprbi | ⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } → 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) |
| 31 | pcdvdstr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑚 ∈ ℤ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) ) → ( 𝑃 pCnt 𝑚 ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) | |
| 32 | 20 22 26 30 31 | syl13anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt 𝑚 ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
| 33 | pcidlem | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) | |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
| 35 | 32 34 | breqtrd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt 𝑚 ) ≤ 𝐴 ) |
| 36 | fznn0 | ⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝑃 pCnt 𝑚 ) ∈ ( 0 ... 𝐴 ) ↔ ( ( 𝑃 pCnt 𝑚 ) ∈ ℕ0 ∧ ( 𝑃 pCnt 𝑚 ) ≤ 𝐴 ) ) ) | |
| 37 | 24 36 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( ( 𝑃 pCnt 𝑚 ) ∈ ( 0 ... 𝐴 ) ↔ ( ( 𝑃 pCnt 𝑚 ) ∈ ℕ0 ∧ ( 𝑃 pCnt 𝑚 ) ≤ 𝐴 ) ) ) |
| 38 | 19 35 37 | mpbir2and | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt 𝑚 ) ∈ ( 0 ... 𝐴 ) ) |
| 39 | oveq2 | ⊢ ( 𝑛 = 𝐴 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝐴 ) ) | |
| 40 | 39 | breq2d | ⊢ ( 𝑛 = 𝐴 → ( 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 41 | 40 | rspcev | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ0 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 42 | 24 30 41 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ∃ 𝑛 ∈ ℕ0 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 43 | pcprmpw2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) ) | |
| 44 | 16 17 43 | syl2an | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( ∃ 𝑛 ∈ ℕ0 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) ) |
| 45 | 42 44 | mpbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) |
| 46 | 45 | adantrl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) |
| 47 | oveq2 | ⊢ ( 𝑛 = ( 𝑃 pCnt 𝑚 ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) | |
| 48 | 47 | eqeq2d | ⊢ ( 𝑛 = ( 𝑃 pCnt 𝑚 ) → ( 𝑚 = ( 𝑃 ↑ 𝑛 ) ↔ 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) ) |
| 49 | 46 48 | syl5ibrcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → ( 𝑛 = ( 𝑃 pCnt 𝑚 ) → 𝑚 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 50 | elfzelz | ⊢ ( 𝑛 ∈ ( 0 ... 𝐴 ) → 𝑛 ∈ ℤ ) | |
| 51 | pcid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) = 𝑛 ) | |
| 52 | 16 50 51 | syl2an | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) = 𝑛 ) |
| 53 | 52 | eqcomd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → 𝑛 = ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) ) |
| 54 | 53 | adantrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → 𝑛 = ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) ) |
| 55 | oveq2 | ⊢ ( 𝑚 = ( 𝑃 ↑ 𝑛 ) → ( 𝑃 pCnt 𝑚 ) = ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) ) | |
| 56 | 55 | eqeq2d | ⊢ ( 𝑚 = ( 𝑃 ↑ 𝑛 ) → ( 𝑛 = ( 𝑃 pCnt 𝑚 ) ↔ 𝑛 = ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 57 | 54 56 | syl5ibrcom | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → ( 𝑚 = ( 𝑃 ↑ 𝑛 ) → 𝑛 = ( 𝑃 pCnt 𝑚 ) ) ) |
| 58 | 49 57 | impbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → ( 𝑛 = ( 𝑃 pCnt 𝑚 ) ↔ 𝑚 = ( 𝑃 ↑ 𝑛 ) ) ) |
| 59 | 1 15 38 58 | f1o2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐹 : ( 0 ... 𝐴 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) |