This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by Mario Carneiro, 13-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsflip.a | ⊢ 𝐴 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | |
| dvdsflip.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 / 𝑦 ) ) | ||
| Assertion | dvdsflip | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsflip.a | ⊢ 𝐴 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | |
| 2 | dvdsflip.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑁 / 𝑦 ) ) | |
| 3 | 1 | eleq2i | ⊢ ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 4 | dvdsdivcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑦 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) | |
| 5 | 3 4 | sylan2b | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑁 / 𝑦 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 6 | 5 1 | eleqtrrdi | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑁 / 𝑦 ) ∈ 𝐴 ) |
| 7 | 1 | eleq2i | ⊢ ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 8 | dvdsdivcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝑧 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) | |
| 9 | 7 8 | sylan2b | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴 ) → ( 𝑁 / 𝑧 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| 10 | 9 1 | eleqtrrdi | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴 ) → ( 𝑁 / 𝑧 ) ∈ 𝐴 ) |
| 11 | 1 | ssrab3 | ⊢ 𝐴 ⊆ ℕ |
| 12 | 11 | sseli | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℕ ) |
| 13 | 11 | sseli | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℕ ) |
| 14 | 12 13 | anim12i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) |
| 15 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
| 17 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 18 | 17 | ad2antrl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
| 19 | nncn | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) | |
| 20 | 19 | ad2antll | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑧 ∈ ℂ ) |
| 21 | nnne0 | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ≠ 0 ) | |
| 22 | 21 | ad2antll | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑧 ≠ 0 ) |
| 23 | 16 18 20 22 | divmul3d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑁 / 𝑧 ) = 𝑦 ↔ 𝑁 = ( 𝑦 · 𝑧 ) ) ) |
| 24 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
| 26 | 16 20 18 25 | divmul2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑁 / 𝑦 ) = 𝑧 ↔ 𝑁 = ( 𝑦 · 𝑧 ) ) ) |
| 27 | 23 26 | bitr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ) → ( ( 𝑁 / 𝑧 ) = 𝑦 ↔ ( 𝑁 / 𝑦 ) = 𝑧 ) ) |
| 28 | 14 27 | sylan2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑁 / 𝑧 ) = 𝑦 ↔ ( 𝑁 / 𝑦 ) = 𝑧 ) ) |
| 29 | eqcom | ⊢ ( 𝑦 = ( 𝑁 / 𝑧 ) ↔ ( 𝑁 / 𝑧 ) = 𝑦 ) | |
| 30 | eqcom | ⊢ ( 𝑧 = ( 𝑁 / 𝑦 ) ↔ ( 𝑁 / 𝑦 ) = 𝑧 ) | |
| 31 | 28 29 30 | 3bitr4g | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 = ( 𝑁 / 𝑧 ) ↔ 𝑧 = ( 𝑁 / 𝑦 ) ) ) |
| 32 | 2 6 10 31 | f1o2d | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |