This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A double commutation of divisor sums based on fsumdvdsdiag . Note that A depends on both j and k . (Contributed by Mario Carneiro, 13-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumdvdscom.1 | |- ( ph -> N e. NN ) |
|
| fsumdvdscom.2 | |- ( j = ( k x. m ) -> A = B ) |
||
| fsumdvdscom.3 | |- ( ( ph /\ ( j e. { x e. NN | x || N } /\ k e. { x e. NN | x || j } ) ) -> A e. CC ) |
||
| Assertion | fsumdvdscom | |- ( ph -> sum_ j e. { x e. NN | x || N } sum_ k e. { x e. NN | x || j } A = sum_ k e. { x e. NN | x || N } sum_ m e. { x e. NN | x || ( N / k ) } B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumdvdscom.1 | |- ( ph -> N e. NN ) |
|
| 2 | fsumdvdscom.2 | |- ( j = ( k x. m ) -> A = B ) |
|
| 3 | fsumdvdscom.3 | |- ( ( ph /\ ( j e. { x e. NN | x || N } /\ k e. { x e. NN | x || j } ) ) -> A e. CC ) |
|
| 4 | breq2 | |- ( j = u -> ( x || j <-> x || u ) ) |
|
| 5 | 4 | rabbidv | |- ( j = u -> { x e. NN | x || j } = { x e. NN | x || u } ) |
| 6 | csbeq1a | |- ( j = u -> A = [_ u / j ]_ A ) |
|
| 7 | 6 | adantr | |- ( ( j = u /\ k e. { x e. NN | x || j } ) -> A = [_ u / j ]_ A ) |
| 8 | 5 7 | sumeq12dv | |- ( j = u -> sum_ k e. { x e. NN | x || j } A = sum_ k e. { x e. NN | x || u } [_ u / j ]_ A ) |
| 9 | nfcv | |- F/_ u sum_ k e. { x e. NN | x || j } A |
|
| 10 | nfcv | |- F/_ j { x e. NN | x || u } |
|
| 11 | nfcsb1v | |- F/_ j [_ u / j ]_ A |
|
| 12 | 10 11 | nfsum | |- F/_ j sum_ k e. { x e. NN | x || u } [_ u / j ]_ A |
| 13 | 8 9 12 | cbvsum | |- sum_ j e. { x e. NN | x || N } sum_ k e. { x e. NN | x || j } A = sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || u } [_ u / j ]_ A |
| 14 | breq2 | |- ( u = ( N / v ) -> ( x || u <-> x || ( N / v ) ) ) |
|
| 15 | 14 | rabbidv | |- ( u = ( N / v ) -> { x e. NN | x || u } = { x e. NN | x || ( N / v ) } ) |
| 16 | csbeq1 | |- ( u = ( N / v ) -> [_ u / j ]_ A = [_ ( N / v ) / j ]_ A ) |
|
| 17 | 16 | adantr | |- ( ( u = ( N / v ) /\ k e. { x e. NN | x || u } ) -> [_ u / j ]_ A = [_ ( N / v ) / j ]_ A ) |
| 18 | 15 17 | sumeq12dv | |- ( u = ( N / v ) -> sum_ k e. { x e. NN | x || u } [_ u / j ]_ A = sum_ k e. { x e. NN | x || ( N / v ) } [_ ( N / v ) / j ]_ A ) |
| 19 | fzfid | |- ( ph -> ( 1 ... N ) e. Fin ) |
|
| 20 | dvdsssfz1 | |- ( N e. NN -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
|
| 21 | 1 20 | syl | |- ( ph -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
| 22 | 19 21 | ssfid | |- ( ph -> { x e. NN | x || N } e. Fin ) |
| 23 | eqid | |- { x e. NN | x || N } = { x e. NN | x || N } |
|
| 24 | eqid | |- ( z e. { x e. NN | x || N } |-> ( N / z ) ) = ( z e. { x e. NN | x || N } |-> ( N / z ) ) |
|
| 25 | 23 24 | dvdsflip | |- ( N e. NN -> ( z e. { x e. NN | x || N } |-> ( N / z ) ) : { x e. NN | x || N } -1-1-onto-> { x e. NN | x || N } ) |
| 26 | 1 25 | syl | |- ( ph -> ( z e. { x e. NN | x || N } |-> ( N / z ) ) : { x e. NN | x || N } -1-1-onto-> { x e. NN | x || N } ) |
| 27 | oveq2 | |- ( z = v -> ( N / z ) = ( N / v ) ) |
|
| 28 | ovex | |- ( N / z ) e. _V |
|
| 29 | 27 24 28 | fvmpt3i | |- ( v e. { x e. NN | x || N } -> ( ( z e. { x e. NN | x || N } |-> ( N / z ) ) ` v ) = ( N / v ) ) |
| 30 | 29 | adantl | |- ( ( ph /\ v e. { x e. NN | x || N } ) -> ( ( z e. { x e. NN | x || N } |-> ( N / z ) ) ` v ) = ( N / v ) ) |
| 31 | fzfid | |- ( ( ph /\ u e. { x e. NN | x || N } ) -> ( 1 ... u ) e. Fin ) |
|
| 32 | ssrab2 | |- { x e. NN | x || N } C_ NN |
|
| 33 | simpr | |- ( ( ph /\ u e. { x e. NN | x || N } ) -> u e. { x e. NN | x || N } ) |
|
| 34 | 32 33 | sselid | |- ( ( ph /\ u e. { x e. NN | x || N } ) -> u e. NN ) |
| 35 | dvdsssfz1 | |- ( u e. NN -> { x e. NN | x || u } C_ ( 1 ... u ) ) |
|
| 36 | 34 35 | syl | |- ( ( ph /\ u e. { x e. NN | x || N } ) -> { x e. NN | x || u } C_ ( 1 ... u ) ) |
| 37 | 31 36 | ssfid | |- ( ( ph /\ u e. { x e. NN | x || N } ) -> { x e. NN | x || u } e. Fin ) |
| 38 | 3 | ralrimivva | |- ( ph -> A. j e. { x e. NN | x || N } A. k e. { x e. NN | x || j } A e. CC ) |
| 39 | nfv | |- F/ u A. k e. { x e. NN | x || j } A e. CC |
|
| 40 | 11 | nfel1 | |- F/ j [_ u / j ]_ A e. CC |
| 41 | 10 40 | nfralw | |- F/ j A. k e. { x e. NN | x || u } [_ u / j ]_ A e. CC |
| 42 | 6 | eleq1d | |- ( j = u -> ( A e. CC <-> [_ u / j ]_ A e. CC ) ) |
| 43 | 5 42 | raleqbidv | |- ( j = u -> ( A. k e. { x e. NN | x || j } A e. CC <-> A. k e. { x e. NN | x || u } [_ u / j ]_ A e. CC ) ) |
| 44 | 39 41 43 | cbvralw | |- ( A. j e. { x e. NN | x || N } A. k e. { x e. NN | x || j } A e. CC <-> A. u e. { x e. NN | x || N } A. k e. { x e. NN | x || u } [_ u / j ]_ A e. CC ) |
| 45 | 38 44 | sylib | |- ( ph -> A. u e. { x e. NN | x || N } A. k e. { x e. NN | x || u } [_ u / j ]_ A e. CC ) |
| 46 | 45 | r19.21bi | |- ( ( ph /\ u e. { x e. NN | x || N } ) -> A. k e. { x e. NN | x || u } [_ u / j ]_ A e. CC ) |
| 47 | 46 | r19.21bi | |- ( ( ( ph /\ u e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || u } ) -> [_ u / j ]_ A e. CC ) |
| 48 | 37 47 | fsumcl | |- ( ( ph /\ u e. { x e. NN | x || N } ) -> sum_ k e. { x e. NN | x || u } [_ u / j ]_ A e. CC ) |
| 49 | 18 22 26 30 48 | fsumf1o | |- ( ph -> sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || u } [_ u / j ]_ A = sum_ v e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / v ) } [_ ( N / v ) / j ]_ A ) |
| 50 | 16 | eleq1d | |- ( u = ( N / v ) -> ( [_ u / j ]_ A e. CC <-> [_ ( N / v ) / j ]_ A e. CC ) ) |
| 51 | 15 50 | raleqbidv | |- ( u = ( N / v ) -> ( A. k e. { x e. NN | x || u } [_ u / j ]_ A e. CC <-> A. k e. { x e. NN | x || ( N / v ) } [_ ( N / v ) / j ]_ A e. CC ) ) |
| 52 | 45 | adantr | |- ( ( ph /\ v e. { x e. NN | x || N } ) -> A. u e. { x e. NN | x || N } A. k e. { x e. NN | x || u } [_ u / j ]_ A e. CC ) |
| 53 | dvdsdivcl | |- ( ( N e. NN /\ v e. { x e. NN | x || N } ) -> ( N / v ) e. { x e. NN | x || N } ) |
|
| 54 | 1 53 | sylan | |- ( ( ph /\ v e. { x e. NN | x || N } ) -> ( N / v ) e. { x e. NN | x || N } ) |
| 55 | 51 52 54 | rspcdva | |- ( ( ph /\ v e. { x e. NN | x || N } ) -> A. k e. { x e. NN | x || ( N / v ) } [_ ( N / v ) / j ]_ A e. CC ) |
| 56 | 55 | r19.21bi | |- ( ( ( ph /\ v e. { x e. NN | x || N } ) /\ k e. { x e. NN | x || ( N / v ) } ) -> [_ ( N / v ) / j ]_ A e. CC ) |
| 57 | 56 | anasss | |- ( ( ph /\ ( v e. { x e. NN | x || N } /\ k e. { x e. NN | x || ( N / v ) } ) ) -> [_ ( N / v ) / j ]_ A e. CC ) |
| 58 | 1 57 | fsumdvdsdiag | |- ( ph -> sum_ v e. { x e. NN | x || N } sum_ k e. { x e. NN | x || ( N / v ) } [_ ( N / v ) / j ]_ A = sum_ k e. { x e. NN | x || N } sum_ v e. { x e. NN | x || ( N / k ) } [_ ( N / v ) / j ]_ A ) |
| 59 | oveq2 | |- ( v = ( ( N / k ) / m ) -> ( N / v ) = ( N / ( ( N / k ) / m ) ) ) |
|
| 60 | 59 | csbeq1d | |- ( v = ( ( N / k ) / m ) -> [_ ( N / v ) / j ]_ A = [_ ( N / ( ( N / k ) / m ) ) / j ]_ A ) |
| 61 | fzfid | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> ( 1 ... ( N / k ) ) e. Fin ) |
|
| 62 | dvdsdivcl | |- ( ( N e. NN /\ k e. { x e. NN | x || N } ) -> ( N / k ) e. { x e. NN | x || N } ) |
|
| 63 | 32 62 | sselid | |- ( ( N e. NN /\ k e. { x e. NN | x || N } ) -> ( N / k ) e. NN ) |
| 64 | 1 63 | sylan | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> ( N / k ) e. NN ) |
| 65 | dvdsssfz1 | |- ( ( N / k ) e. NN -> { x e. NN | x || ( N / k ) } C_ ( 1 ... ( N / k ) ) ) |
|
| 66 | 64 65 | syl | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / k ) } C_ ( 1 ... ( N / k ) ) ) |
| 67 | 61 66 | ssfid | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> { x e. NN | x || ( N / k ) } e. Fin ) |
| 68 | eqid | |- { x e. NN | x || ( N / k ) } = { x e. NN | x || ( N / k ) } |
|
| 69 | eqid | |- ( z e. { x e. NN | x || ( N / k ) } |-> ( ( N / k ) / z ) ) = ( z e. { x e. NN | x || ( N / k ) } |-> ( ( N / k ) / z ) ) |
|
| 70 | 68 69 | dvdsflip | |- ( ( N / k ) e. NN -> ( z e. { x e. NN | x || ( N / k ) } |-> ( ( N / k ) / z ) ) : { x e. NN | x || ( N / k ) } -1-1-onto-> { x e. NN | x || ( N / k ) } ) |
| 71 | 64 70 | syl | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> ( z e. { x e. NN | x || ( N / k ) } |-> ( ( N / k ) / z ) ) : { x e. NN | x || ( N / k ) } -1-1-onto-> { x e. NN | x || ( N / k ) } ) |
| 72 | oveq2 | |- ( z = m -> ( ( N / k ) / z ) = ( ( N / k ) / m ) ) |
|
| 73 | ovex | |- ( ( N / k ) / z ) e. _V |
|
| 74 | 72 69 73 | fvmpt3i | |- ( m e. { x e. NN | x || ( N / k ) } -> ( ( z e. { x e. NN | x || ( N / k ) } |-> ( ( N / k ) / z ) ) ` m ) = ( ( N / k ) / m ) ) |
| 75 | 74 | adantl | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( ( z e. { x e. NN | x || ( N / k ) } |-> ( ( N / k ) / z ) ) ` m ) = ( ( N / k ) / m ) ) |
| 76 | 1 | fsumdvdsdiaglem | |- ( ph -> ( ( k e. { x e. NN | x || N } /\ v e. { x e. NN | x || ( N / k ) } ) -> ( v e. { x e. NN | x || N } /\ k e. { x e. NN | x || ( N / v ) } ) ) ) |
| 77 | 57 | ex | |- ( ph -> ( ( v e. { x e. NN | x || N } /\ k e. { x e. NN | x || ( N / v ) } ) -> [_ ( N / v ) / j ]_ A e. CC ) ) |
| 78 | 76 77 | syld | |- ( ph -> ( ( k e. { x e. NN | x || N } /\ v e. { x e. NN | x || ( N / k ) } ) -> [_ ( N / v ) / j ]_ A e. CC ) ) |
| 79 | 78 | impl | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ v e. { x e. NN | x || ( N / k ) } ) -> [_ ( N / v ) / j ]_ A e. CC ) |
| 80 | 60 67 71 75 79 | fsumf1o | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> sum_ v e. { x e. NN | x || ( N / k ) } [_ ( N / v ) / j ]_ A = sum_ m e. { x e. NN | x || ( N / k ) } [_ ( N / ( ( N / k ) / m ) ) / j ]_ A ) |
| 81 | ovexd | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( N / ( ( N / k ) / m ) ) e. _V ) |
|
| 82 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 83 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 84 | 82 83 | jca | |- ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) |
| 85 | 1 84 | syl | |- ( ph -> ( N e. CC /\ N =/= 0 ) ) |
| 86 | 85 | ad2antrr | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( N e. CC /\ N =/= 0 ) ) |
| 87 | 86 | simpld | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> N e. CC ) |
| 88 | elrabi | |- ( k e. { x e. NN | x || N } -> k e. NN ) |
|
| 89 | 88 | adantl | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> k e. NN ) |
| 90 | 89 | adantr | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> k e. NN ) |
| 91 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 92 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 93 | 91 92 | jca | |- ( k e. NN -> ( k e. CC /\ k =/= 0 ) ) |
| 94 | 90 93 | syl | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( k e. CC /\ k =/= 0 ) ) |
| 95 | elrabi | |- ( m e. { x e. NN | x || ( N / k ) } -> m e. NN ) |
|
| 96 | 95 | adantl | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> m e. NN ) |
| 97 | nncn | |- ( m e. NN -> m e. CC ) |
|
| 98 | nnne0 | |- ( m e. NN -> m =/= 0 ) |
|
| 99 | 97 98 | jca | |- ( m e. NN -> ( m e. CC /\ m =/= 0 ) ) |
| 100 | 96 99 | syl | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( m e. CC /\ m =/= 0 ) ) |
| 101 | divdiv1 | |- ( ( N e. CC /\ ( k e. CC /\ k =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( N / k ) / m ) = ( N / ( k x. m ) ) ) |
|
| 102 | 87 94 100 101 | syl3anc | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( ( N / k ) / m ) = ( N / ( k x. m ) ) ) |
| 103 | 102 | oveq2d | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( N / ( ( N / k ) / m ) ) = ( N / ( N / ( k x. m ) ) ) ) |
| 104 | nnmulcl | |- ( ( k e. NN /\ m e. NN ) -> ( k x. m ) e. NN ) |
|
| 105 | 89 95 104 | syl2an | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( k x. m ) e. NN ) |
| 106 | nncn | |- ( ( k x. m ) e. NN -> ( k x. m ) e. CC ) |
|
| 107 | nnne0 | |- ( ( k x. m ) e. NN -> ( k x. m ) =/= 0 ) |
|
| 108 | 106 107 | jca | |- ( ( k x. m ) e. NN -> ( ( k x. m ) e. CC /\ ( k x. m ) =/= 0 ) ) |
| 109 | 105 108 | syl | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( ( k x. m ) e. CC /\ ( k x. m ) =/= 0 ) ) |
| 110 | ddcan | |- ( ( ( N e. CC /\ N =/= 0 ) /\ ( ( k x. m ) e. CC /\ ( k x. m ) =/= 0 ) ) -> ( N / ( N / ( k x. m ) ) ) = ( k x. m ) ) |
|
| 111 | 86 109 110 | syl2anc | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( N / ( N / ( k x. m ) ) ) = ( k x. m ) ) |
| 112 | 103 111 | eqtrd | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( N / ( ( N / k ) / m ) ) = ( k x. m ) ) |
| 113 | 112 | eqeq2d | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> ( j = ( N / ( ( N / k ) / m ) ) <-> j = ( k x. m ) ) ) |
| 114 | 113 | biimpa | |- ( ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) /\ j = ( N / ( ( N / k ) / m ) ) ) -> j = ( k x. m ) ) |
| 115 | 114 2 | syl | |- ( ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) /\ j = ( N / ( ( N / k ) / m ) ) ) -> A = B ) |
| 116 | 81 115 | csbied | |- ( ( ( ph /\ k e. { x e. NN | x || N } ) /\ m e. { x e. NN | x || ( N / k ) } ) -> [_ ( N / ( ( N / k ) / m ) ) / j ]_ A = B ) |
| 117 | 116 | sumeq2dv | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> sum_ m e. { x e. NN | x || ( N / k ) } [_ ( N / ( ( N / k ) / m ) ) / j ]_ A = sum_ m e. { x e. NN | x || ( N / k ) } B ) |
| 118 | 80 117 | eqtrd | |- ( ( ph /\ k e. { x e. NN | x || N } ) -> sum_ v e. { x e. NN | x || ( N / k ) } [_ ( N / v ) / j ]_ A = sum_ m e. { x e. NN | x || ( N / k ) } B ) |
| 119 | 118 | sumeq2dv | |- ( ph -> sum_ k e. { x e. NN | x || N } sum_ v e. { x e. NN | x || ( N / k ) } [_ ( N / v ) / j ]_ A = sum_ k e. { x e. NN | x || N } sum_ m e. { x e. NN | x || ( N / k ) } B ) |
| 120 | 49 58 119 | 3eqtrd | |- ( ph -> sum_ u e. { x e. NN | x || N } sum_ k e. { x e. NN | x || u } [_ u / j ]_ A = sum_ k e. { x e. NN | x || N } sum_ m e. { x e. NN | x || ( N / k ) } B ) |
| 121 | 13 120 | eqtrid | |- ( ph -> sum_ j e. { x e. NN | x || N } sum_ k e. { x e. NN | x || j } A = sum_ k e. { x e. NN | x || N } sum_ m e. { x e. NN | x || ( N / k ) } B ) |