This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for sum: if x is (effectively) not free in A and B , it is not free in sum_ k e. A B . Version of nfsum with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 11-Dec-2005) (Revised by GG, 24-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfsum.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| nfsum.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsum.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfsum.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | df-sum | ⊢ Σ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑧 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 ℤ | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 ( ℤ≥ ‘ 𝑚 ) | |
| 6 | 1 5 | nfss | ⊢ Ⅎ 𝑥 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝑚 | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 + | |
| 9 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑛 ∈ 𝐴 |
| 10 | nfcv | ⊢ Ⅎ 𝑥 𝑛 | |
| 11 | 10 2 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 |
| 12 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 13 | 9 11 12 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) |
| 14 | 4 13 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 15 | 7 8 14 | nfseq | ⊢ Ⅎ 𝑥 seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) |
| 16 | nfcv | ⊢ Ⅎ 𝑥 ⇝ | |
| 17 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 18 | 15 16 17 | nfbr | ⊢ Ⅎ 𝑥 seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑧 |
| 19 | 6 18 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑧 ) |
| 20 | 4 19 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑧 ) |
| 21 | nfcv | ⊢ Ⅎ 𝑥 ℕ | |
| 22 | nfcv | ⊢ Ⅎ 𝑥 𝑓 | |
| 23 | nfcv | ⊢ Ⅎ 𝑥 ( 1 ... 𝑚 ) | |
| 24 | 22 23 1 | nff1o | ⊢ Ⅎ 𝑥 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 |
| 25 | nfcv | ⊢ Ⅎ 𝑥 1 | |
| 26 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑛 ) | |
| 27 | 26 2 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 |
| 28 | 21 27 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 29 | 25 8 28 | nfseq | ⊢ Ⅎ 𝑥 seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
| 30 | 29 7 | nffv | ⊢ Ⅎ 𝑥 ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
| 31 | 30 | nfeq2 | ⊢ Ⅎ 𝑥 𝑧 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
| 32 | 24 31 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 33 | 32 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 34 | 21 33 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 35 | 20 34 | nfor | ⊢ Ⅎ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 36 | 35 | nfiotaw | ⊢ Ⅎ 𝑥 ( ℩ 𝑧 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑧 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑧 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 37 | 3 36 | nfcxfr | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝐴 𝐵 |