This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation in a double division. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ddcan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / ( 𝐴 / 𝐵 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℂ ) | |
| 2 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 3 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 4 | divcan1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
| 6 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 7 | 1 2 3 6 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 8 | divne0 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ≠ 0 ) | |
| 9 | divmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℂ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ) → ( ( 𝐴 / ( 𝐴 / 𝐵 ) ) = 𝐵 ↔ ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) ) | |
| 10 | 1 2 7 8 9 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / ( 𝐴 / 𝐵 ) ) = 𝐵 ↔ ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) ) |
| 11 | 5 10 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / ( 𝐴 / 𝐵 ) ) = 𝐵 ) |