This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe . (Contributed by Mario Carneiro, 10-Mar-2013) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } | |
| fnwe.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| fnwe.3 | ⊢ ( 𝜑 → 𝑅 We 𝐵 ) | ||
| fnwe.4 | ⊢ ( 𝜑 → 𝑆 We 𝐴 ) | ||
| fnwe.5 | ⊢ ( 𝜑 → ( 𝐹 “ 𝑤 ) ∈ V ) | ||
| fnwelem.6 | ⊢ 𝑄 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) } | ||
| fnwelem.7 | ⊢ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 ) | ||
| Assertion | fnwelem | ⊢ ( 𝜑 → 𝑇 We 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } | |
| 2 | fnwe.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | fnwe.3 | ⊢ ( 𝜑 → 𝑅 We 𝐵 ) | |
| 4 | fnwe.4 | ⊢ ( 𝜑 → 𝑆 We 𝐴 ) | |
| 5 | fnwe.5 | ⊢ ( 𝜑 → ( 𝐹 “ 𝑤 ) ∈ V ) | |
| 6 | fnwelem.6 | ⊢ 𝑄 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) } | |
| 7 | fnwelem.7 | ⊢ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 ) | |
| 8 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) | |
| 9 | simpr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) | |
| 10 | 8 9 | opelxpd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 ∈ ( 𝐵 × 𝐴 ) ) |
| 11 | 10 7 | fmptd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) ) |
| 12 | frn | ⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) ) | |
| 13 | 2 11 12 | 3syl | ⊢ ( 𝜑 → ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) ) |
| 14 | 6 | wexp | ⊢ ( ( 𝑅 We 𝐵 ∧ 𝑆 We 𝐴 ) → 𝑄 We ( 𝐵 × 𝐴 ) ) |
| 15 | 3 4 14 | syl2anc | ⊢ ( 𝜑 → 𝑄 We ( 𝐵 × 𝐴 ) ) |
| 16 | wess | ⊢ ( ran 𝐺 ⊆ ( 𝐵 × 𝐴 ) → ( 𝑄 We ( 𝐵 × 𝐴 ) → 𝑄 We ran 𝐺 ) ) | |
| 17 | 13 15 16 | sylc | ⊢ ( 𝜑 → 𝑄 We ran 𝐺 ) |
| 18 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 19 | id | ⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) | |
| 20 | 18 19 | opeq12d | ⊢ ( 𝑧 = 𝑥 → 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ) |
| 21 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ∈ V | |
| 22 | 20 7 21 | fvmpt | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐺 ‘ 𝑥 ) = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ) |
| 23 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 24 | id | ⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) | |
| 25 | 23 24 | opeq12d | ⊢ ( 𝑧 = 𝑦 → 〈 ( 𝐹 ‘ 𝑧 ) , 𝑧 〉 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) |
| 26 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ∈ V | |
| 27 | 25 7 26 | fvmpt | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝐺 ‘ 𝑦 ) = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) |
| 28 | 22 27 | eqeqan12d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) ) |
| 29 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 30 | vex | ⊢ 𝑥 ∈ V | |
| 31 | 29 30 | opth | ⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 = 𝑦 ) ) |
| 32 | 31 | simprbi | ⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → 𝑥 = 𝑦 ) |
| 33 | 28 32 | biimtrdi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 34 | 33 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 35 | dff13 | ⊢ ( 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) ↔ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 36 | 11 34 35 | sylanblrc | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) ) |
| 37 | f1f1orn | ⊢ ( 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) → 𝐺 : 𝐴 –1-1-onto→ ran 𝐺 ) | |
| 38 | f1ocnv | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ ran 𝐺 → ◡ 𝐺 : ran 𝐺 –1-1-onto→ 𝐴 ) | |
| 39 | 2 36 37 38 | 4syl | ⊢ ( 𝜑 → ◡ 𝐺 : ran 𝐺 –1-1-onto→ 𝐴 ) |
| 40 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } | |
| 41 | 40 | f1oiso2 | ⊢ ( ◡ 𝐺 : ran 𝐺 –1-1-onto→ 𝐴 → ◡ 𝐺 Isom 𝑄 , { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ( ran 𝐺 , 𝐴 ) ) |
| 42 | frel | ⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → Rel 𝐺 ) | |
| 43 | dfrel2 | ⊢ ( Rel 𝐺 ↔ ◡ ◡ 𝐺 = 𝐺 ) | |
| 44 | 42 43 | sylib | ⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ◡ ◡ 𝐺 = 𝐺 ) |
| 45 | 44 | fveq1d | ⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( ◡ ◡ 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 46 | 44 | fveq1d | ⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( ◡ ◡ 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 47 | 45 46 | breq12d | ⊢ ( 𝐺 : 𝐴 ⟶ ( 𝐵 × 𝐴 ) → ( ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ) ) |
| 48 | 11 47 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ) ) |
| 50 | 22 27 | breqan12d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 𝑄 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) ) |
| 51 | 50 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑥 ) 𝑄 ( 𝐺 ‘ 𝑦 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 𝑄 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ) ) |
| 52 | eleq1 | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ∈ ( 𝐵 × 𝐴 ) ) ) | |
| 53 | opelxp | ⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 54 | 52 53 | bitrdi | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 55 | 54 | anbi1d | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ) ) |
| 56 | 29 30 | op1std | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( 1st ‘ 𝑢 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 57 | 56 | breq1d | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ) ) |
| 58 | 56 | eqeq1d | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ) ) |
| 59 | 29 30 | op2ndd | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( 2nd ‘ 𝑢 ) = 𝑥 ) |
| 60 | 59 | breq1d | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ↔ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) |
| 61 | 58 60 | anbi12d | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) |
| 62 | 57 61 | orbi12d | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) ) |
| 63 | 55 62 | anbi12d | ⊢ ( 𝑢 = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 → ( ( ( 𝑢 ∈ ( 𝐵 × 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 1st ‘ 𝑢 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 1st ‘ 𝑢 ) = ( 1st ‘ 𝑣 ) ∧ ( 2nd ‘ 𝑢 ) 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) ) ) |
| 64 | eleq1 | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 𝑣 ∈ ( 𝐵 × 𝐴 ) ↔ 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ∈ ( 𝐵 × 𝐴 ) ) ) | |
| 65 | opelxp | ⊢ ( 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 66 | 64 65 | bitrdi | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 𝑣 ∈ ( 𝐵 × 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 67 | 66 | anbi2d | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ) ) |
| 68 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 69 | vex | ⊢ 𝑦 ∈ V | |
| 70 | 68 69 | op1std | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 1st ‘ 𝑣 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 71 | 70 | breq2d | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ) ) |
| 72 | 70 | eqeq2d | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 73 | 68 69 | op2ndd | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 2nd ‘ 𝑣 ) = 𝑦 ) |
| 74 | 73 | breq2d | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ↔ 𝑥 𝑆 𝑦 ) ) |
| 75 | 72 74 | anbi12d | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) |
| 76 | 71 75 | orbi12d | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) |
| 77 | 67 76 | anbi12d | ⊢ ( 𝑣 = 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 → ( ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( 𝐵 × 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑣 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 1st ‘ 𝑣 ) ∧ 𝑥 𝑆 ( 2nd ‘ 𝑣 ) ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) ) |
| 78 | 21 26 63 77 6 | brab | ⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 𝑄 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) |
| 79 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 80 | simpr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 81 | 79 80 | jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 82 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) | |
| 83 | simpr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 84 | 82 83 | jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) |
| 85 | 81 84 | anim12dan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 86 | 85 | biantrurd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) ) |
| 87 | 78 86 | bitr4id | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 𝑄 〈 ( 𝐹 ‘ 𝑦 ) , 𝑦 〉 ↔ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ) |
| 88 | 49 51 87 | 3bitrrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ↔ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) ) |
| 89 | 88 | pm5.32da | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) ) ) |
| 90 | 89 | opabbidv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑦 ) ∨ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 𝑆 𝑦 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ) |
| 91 | 1 90 | eqtrid | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ) |
| 92 | isoeq3 | ⊢ ( 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } → ( ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ↔ ◡ 𝐺 Isom 𝑄 , { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ( ran 𝐺 , 𝐴 ) ) ) | |
| 93 | 91 92 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ↔ ◡ 𝐺 Isom 𝑄 , { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ◡ ◡ 𝐺 ‘ 𝑥 ) 𝑄 ( ◡ ◡ 𝐺 ‘ 𝑦 ) ) } ( ran 𝐺 , 𝐴 ) ) ) |
| 94 | 41 93 | imbitrrid | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐺 : ran 𝐺 –1-1-onto→ 𝐴 → ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ) ) |
| 95 | 2 39 94 | sylc | ⊢ ( 𝜑 → ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) ) |
| 96 | isocnv | ⊢ ( ◡ 𝐺 Isom 𝑄 , 𝑇 ( ran 𝐺 , 𝐴 ) → ◡ ◡ 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) ) | |
| 97 | 95 96 | syl | ⊢ ( 𝜑 → ◡ ◡ 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) ) |
| 98 | imacnvcnv | ⊢ ( ◡ ◡ 𝐺 “ 𝑤 ) = ( 𝐺 “ 𝑤 ) | |
| 99 | vex | ⊢ 𝑤 ∈ V | |
| 100 | xpexg | ⊢ ( ( ( 𝐹 “ 𝑤 ) ∈ V ∧ 𝑤 ∈ V ) → ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ∈ V ) | |
| 101 | 5 99 100 | sylancl | ⊢ ( 𝜑 → ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ∈ V ) |
| 102 | imadmres | ⊢ ( 𝐺 “ dom ( 𝐺 ↾ 𝑤 ) ) = ( 𝐺 “ 𝑤 ) | |
| 103 | dmres | ⊢ dom ( 𝐺 ↾ 𝑤 ) = ( 𝑤 ∩ dom 𝐺 ) | |
| 104 | 103 | elin2 | ⊢ ( 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) |
| 105 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom 𝐺 ) | |
| 106 | f1dm | ⊢ ( 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) → dom 𝐺 = 𝐴 ) | |
| 107 | 2 36 106 | 3syl | ⊢ ( 𝜑 → dom 𝐺 = 𝐴 ) |
| 108 | 107 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → dom 𝐺 = 𝐴 ) |
| 109 | 105 108 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ 𝐴 ) |
| 110 | 109 22 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) = 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ) |
| 111 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 112 | 111 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝐹 Fn 𝐴 ) |
| 113 | dmres | ⊢ dom ( 𝐹 ↾ 𝑤 ) = ( 𝑤 ∩ dom 𝐹 ) | |
| 114 | inss2 | ⊢ ( 𝑤 ∩ dom 𝐹 ) ⊆ dom 𝐹 | |
| 115 | 112 | fndmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → dom 𝐹 = 𝐴 ) |
| 116 | 114 115 | sseqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝑤 ∩ dom 𝐹 ) ⊆ 𝐴 ) |
| 117 | 113 116 | eqsstrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → dom ( 𝐹 ↾ 𝑤 ) ⊆ 𝐴 ) |
| 118 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ 𝑤 ) | |
| 119 | 109 115 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 120 | 113 | elin2 | ⊢ ( 𝑥 ∈ dom ( 𝐹 ↾ 𝑤 ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐹 ) ) |
| 121 | 118 119 120 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 𝑥 ∈ dom ( 𝐹 ↾ 𝑤 ) ) |
| 122 | fnfvima | ⊢ ( ( 𝐹 Fn 𝐴 ∧ dom ( 𝐹 ↾ 𝑤 ) ⊆ 𝐴 ∧ 𝑥 ∈ dom ( 𝐹 ↾ 𝑤 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ dom ( 𝐹 ↾ 𝑤 ) ) ) | |
| 123 | 112 117 121 122 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ dom ( 𝐹 ↾ 𝑤 ) ) ) |
| 124 | imadmres | ⊢ ( 𝐹 “ dom ( 𝐹 ↾ 𝑤 ) ) = ( 𝐹 “ 𝑤 ) | |
| 125 | 123 124 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑤 ) ) |
| 126 | 125 118 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , 𝑥 〉 ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 127 | 110 126 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑤 ∧ 𝑥 ∈ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 128 | 104 127 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 129 | 128 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 130 | f1fun | ⊢ ( 𝐺 : 𝐴 –1-1→ ( 𝐵 × 𝐴 ) → Fun 𝐺 ) | |
| 131 | 2 36 130 | 3syl | ⊢ ( 𝜑 → Fun 𝐺 ) |
| 132 | resss | ⊢ ( 𝐺 ↾ 𝑤 ) ⊆ 𝐺 | |
| 133 | dmss | ⊢ ( ( 𝐺 ↾ 𝑤 ) ⊆ 𝐺 → dom ( 𝐺 ↾ 𝑤 ) ⊆ dom 𝐺 ) | |
| 134 | 132 133 | ax-mp | ⊢ dom ( 𝐺 ↾ 𝑤 ) ⊆ dom 𝐺 |
| 135 | funimass4 | ⊢ ( ( Fun 𝐺 ∧ dom ( 𝐺 ↾ 𝑤 ) ⊆ dom 𝐺 ) → ( ( 𝐺 “ dom ( 𝐺 ↾ 𝑤 ) ) ⊆ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ↔ ∀ 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) ) | |
| 136 | 131 134 135 | sylancl | ⊢ ( 𝜑 → ( ( 𝐺 “ dom ( 𝐺 ↾ 𝑤 ) ) ⊆ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ↔ ∀ 𝑥 ∈ dom ( 𝐺 ↾ 𝑤 ) ( 𝐺 ‘ 𝑥 ) ∈ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) ) |
| 137 | 129 136 | mpbird | ⊢ ( 𝜑 → ( 𝐺 “ dom ( 𝐺 ↾ 𝑤 ) ) ⊆ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 138 | 102 137 | eqsstrrid | ⊢ ( 𝜑 → ( 𝐺 “ 𝑤 ) ⊆ ( ( 𝐹 “ 𝑤 ) × 𝑤 ) ) |
| 139 | 101 138 | ssexd | ⊢ ( 𝜑 → ( 𝐺 “ 𝑤 ) ∈ V ) |
| 140 | 98 139 | eqeltrid | ⊢ ( 𝜑 → ( ◡ ◡ 𝐺 “ 𝑤 ) ∈ V ) |
| 141 | 140 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ( ◡ ◡ 𝐺 “ 𝑤 ) ∈ V ) |
| 142 | isowe2 | ⊢ ( ( ◡ ◡ 𝐺 Isom 𝑇 , 𝑄 ( 𝐴 , ran 𝐺 ) ∧ ∀ 𝑤 ( ◡ ◡ 𝐺 “ 𝑤 ) ∈ V ) → ( 𝑄 We ran 𝐺 → 𝑇 We 𝐴 ) ) | |
| 143 | 97 141 142 | syl2anc | ⊢ ( 𝜑 → ( 𝑄 We ran 𝐺 → 𝑇 We 𝐴 ) ) |
| 144 | 17 143 | mpd | ⊢ ( 𝜑 → 𝑇 We 𝐴 ) |