This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe . (Contributed by Mario Carneiro, 10-Mar-2013) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe.1 | |- T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } |
|
| fnwe.2 | |- ( ph -> F : A --> B ) |
||
| fnwe.3 | |- ( ph -> R We B ) |
||
| fnwe.4 | |- ( ph -> S We A ) |
||
| fnwe.5 | |- ( ph -> ( F " w ) e. _V ) |
||
| fnwelem.6 | |- Q = { <. u , v >. | ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) /\ ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) ) } |
||
| fnwelem.7 | |- G = ( z e. A |-> <. ( F ` z ) , z >. ) |
||
| Assertion | fnwelem | |- ( ph -> T We A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe.1 | |- T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } |
|
| 2 | fnwe.2 | |- ( ph -> F : A --> B ) |
|
| 3 | fnwe.3 | |- ( ph -> R We B ) |
|
| 4 | fnwe.4 | |- ( ph -> S We A ) |
|
| 5 | fnwe.5 | |- ( ph -> ( F " w ) e. _V ) |
|
| 6 | fnwelem.6 | |- Q = { <. u , v >. | ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) /\ ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) ) } |
|
| 7 | fnwelem.7 | |- G = ( z e. A |-> <. ( F ` z ) , z >. ) |
|
| 8 | ffvelcdm | |- ( ( F : A --> B /\ z e. A ) -> ( F ` z ) e. B ) |
|
| 9 | simpr | |- ( ( F : A --> B /\ z e. A ) -> z e. A ) |
|
| 10 | 8 9 | opelxpd | |- ( ( F : A --> B /\ z e. A ) -> <. ( F ` z ) , z >. e. ( B X. A ) ) |
| 11 | 10 7 | fmptd | |- ( F : A --> B -> G : A --> ( B X. A ) ) |
| 12 | frn | |- ( G : A --> ( B X. A ) -> ran G C_ ( B X. A ) ) |
|
| 13 | 2 11 12 | 3syl | |- ( ph -> ran G C_ ( B X. A ) ) |
| 14 | 6 | wexp | |- ( ( R We B /\ S We A ) -> Q We ( B X. A ) ) |
| 15 | 3 4 14 | syl2anc | |- ( ph -> Q We ( B X. A ) ) |
| 16 | wess | |- ( ran G C_ ( B X. A ) -> ( Q We ( B X. A ) -> Q We ran G ) ) |
|
| 17 | 13 15 16 | sylc | |- ( ph -> Q We ran G ) |
| 18 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 19 | id | |- ( z = x -> z = x ) |
|
| 20 | 18 19 | opeq12d | |- ( z = x -> <. ( F ` z ) , z >. = <. ( F ` x ) , x >. ) |
| 21 | opex | |- <. ( F ` x ) , x >. e. _V |
|
| 22 | 20 7 21 | fvmpt | |- ( x e. A -> ( G ` x ) = <. ( F ` x ) , x >. ) |
| 23 | fveq2 | |- ( z = y -> ( F ` z ) = ( F ` y ) ) |
|
| 24 | id | |- ( z = y -> z = y ) |
|
| 25 | 23 24 | opeq12d | |- ( z = y -> <. ( F ` z ) , z >. = <. ( F ` y ) , y >. ) |
| 26 | opex | |- <. ( F ` y ) , y >. e. _V |
|
| 27 | 25 7 26 | fvmpt | |- ( y e. A -> ( G ` y ) = <. ( F ` y ) , y >. ) |
| 28 | 22 27 | eqeqan12d | |- ( ( x e. A /\ y e. A ) -> ( ( G ` x ) = ( G ` y ) <-> <. ( F ` x ) , x >. = <. ( F ` y ) , y >. ) ) |
| 29 | fvex | |- ( F ` x ) e. _V |
|
| 30 | vex | |- x e. _V |
|
| 31 | 29 30 | opth | |- ( <. ( F ` x ) , x >. = <. ( F ` y ) , y >. <-> ( ( F ` x ) = ( F ` y ) /\ x = y ) ) |
| 32 | 31 | simprbi | |- ( <. ( F ` x ) , x >. = <. ( F ` y ) , y >. -> x = y ) |
| 33 | 28 32 | biimtrdi | |- ( ( x e. A /\ y e. A ) -> ( ( G ` x ) = ( G ` y ) -> x = y ) ) |
| 34 | 33 | rgen2 | |- A. x e. A A. y e. A ( ( G ` x ) = ( G ` y ) -> x = y ) |
| 35 | dff13 | |- ( G : A -1-1-> ( B X. A ) <-> ( G : A --> ( B X. A ) /\ A. x e. A A. y e. A ( ( G ` x ) = ( G ` y ) -> x = y ) ) ) |
|
| 36 | 11 34 35 | sylanblrc | |- ( F : A --> B -> G : A -1-1-> ( B X. A ) ) |
| 37 | f1f1orn | |- ( G : A -1-1-> ( B X. A ) -> G : A -1-1-onto-> ran G ) |
|
| 38 | f1ocnv | |- ( G : A -1-1-onto-> ran G -> `' G : ran G -1-1-onto-> A ) |
|
| 39 | 2 36 37 38 | 4syl | |- ( ph -> `' G : ran G -1-1-onto-> A ) |
| 40 | eqid | |- { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } |
|
| 41 | 40 | f1oiso2 | |- ( `' G : ran G -1-1-onto-> A -> `' G Isom Q , { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ( ran G , A ) ) |
| 42 | frel | |- ( G : A --> ( B X. A ) -> Rel G ) |
|
| 43 | dfrel2 | |- ( Rel G <-> `' `' G = G ) |
|
| 44 | 42 43 | sylib | |- ( G : A --> ( B X. A ) -> `' `' G = G ) |
| 45 | 44 | fveq1d | |- ( G : A --> ( B X. A ) -> ( `' `' G ` x ) = ( G ` x ) ) |
| 46 | 44 | fveq1d | |- ( G : A --> ( B X. A ) -> ( `' `' G ` y ) = ( G ` y ) ) |
| 47 | 45 46 | breq12d | |- ( G : A --> ( B X. A ) -> ( ( `' `' G ` x ) Q ( `' `' G ` y ) <-> ( G ` x ) Q ( G ` y ) ) ) |
| 48 | 11 47 | syl | |- ( F : A --> B -> ( ( `' `' G ` x ) Q ( `' `' G ` y ) <-> ( G ` x ) Q ( G ` y ) ) ) |
| 49 | 48 | adantr | |- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( `' `' G ` x ) Q ( `' `' G ` y ) <-> ( G ` x ) Q ( G ` y ) ) ) |
| 50 | 22 27 | breqan12d | |- ( ( x e. A /\ y e. A ) -> ( ( G ` x ) Q ( G ` y ) <-> <. ( F ` x ) , x >. Q <. ( F ` y ) , y >. ) ) |
| 51 | 50 | adantl | |- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( G ` x ) Q ( G ` y ) <-> <. ( F ` x ) , x >. Q <. ( F ` y ) , y >. ) ) |
| 52 | eleq1 | |- ( u = <. ( F ` x ) , x >. -> ( u e. ( B X. A ) <-> <. ( F ` x ) , x >. e. ( B X. A ) ) ) |
|
| 53 | opelxp | |- ( <. ( F ` x ) , x >. e. ( B X. A ) <-> ( ( F ` x ) e. B /\ x e. A ) ) |
|
| 54 | 52 53 | bitrdi | |- ( u = <. ( F ` x ) , x >. -> ( u e. ( B X. A ) <-> ( ( F ` x ) e. B /\ x e. A ) ) ) |
| 55 | 54 | anbi1d | |- ( u = <. ( F ` x ) , x >. -> ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) <-> ( ( ( F ` x ) e. B /\ x e. A ) /\ v e. ( B X. A ) ) ) ) |
| 56 | 29 30 | op1std | |- ( u = <. ( F ` x ) , x >. -> ( 1st ` u ) = ( F ` x ) ) |
| 57 | 56 | breq1d | |- ( u = <. ( F ` x ) , x >. -> ( ( 1st ` u ) R ( 1st ` v ) <-> ( F ` x ) R ( 1st ` v ) ) ) |
| 58 | 56 | eqeq1d | |- ( u = <. ( F ` x ) , x >. -> ( ( 1st ` u ) = ( 1st ` v ) <-> ( F ` x ) = ( 1st ` v ) ) ) |
| 59 | 29 30 | op2ndd | |- ( u = <. ( F ` x ) , x >. -> ( 2nd ` u ) = x ) |
| 60 | 59 | breq1d | |- ( u = <. ( F ` x ) , x >. -> ( ( 2nd ` u ) S ( 2nd ` v ) <-> x S ( 2nd ` v ) ) ) |
| 61 | 58 60 | anbi12d | |- ( u = <. ( F ` x ) , x >. -> ( ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) <-> ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) ) |
| 62 | 57 61 | orbi12d | |- ( u = <. ( F ` x ) , x >. -> ( ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) <-> ( ( F ` x ) R ( 1st ` v ) \/ ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) ) ) |
| 63 | 55 62 | anbi12d | |- ( u = <. ( F ` x ) , x >. -> ( ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) /\ ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) ) <-> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ v e. ( B X. A ) ) /\ ( ( F ` x ) R ( 1st ` v ) \/ ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) ) ) ) |
| 64 | eleq1 | |- ( v = <. ( F ` y ) , y >. -> ( v e. ( B X. A ) <-> <. ( F ` y ) , y >. e. ( B X. A ) ) ) |
|
| 65 | opelxp | |- ( <. ( F ` y ) , y >. e. ( B X. A ) <-> ( ( F ` y ) e. B /\ y e. A ) ) |
|
| 66 | 64 65 | bitrdi | |- ( v = <. ( F ` y ) , y >. -> ( v e. ( B X. A ) <-> ( ( F ` y ) e. B /\ y e. A ) ) ) |
| 67 | 66 | anbi2d | |- ( v = <. ( F ` y ) , y >. -> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ v e. ( B X. A ) ) <-> ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) ) ) |
| 68 | fvex | |- ( F ` y ) e. _V |
|
| 69 | vex | |- y e. _V |
|
| 70 | 68 69 | op1std | |- ( v = <. ( F ` y ) , y >. -> ( 1st ` v ) = ( F ` y ) ) |
| 71 | 70 | breq2d | |- ( v = <. ( F ` y ) , y >. -> ( ( F ` x ) R ( 1st ` v ) <-> ( F ` x ) R ( F ` y ) ) ) |
| 72 | 70 | eqeq2d | |- ( v = <. ( F ` y ) , y >. -> ( ( F ` x ) = ( 1st ` v ) <-> ( F ` x ) = ( F ` y ) ) ) |
| 73 | 68 69 | op2ndd | |- ( v = <. ( F ` y ) , y >. -> ( 2nd ` v ) = y ) |
| 74 | 73 | breq2d | |- ( v = <. ( F ` y ) , y >. -> ( x S ( 2nd ` v ) <-> x S y ) ) |
| 75 | 72 74 | anbi12d | |- ( v = <. ( F ` y ) , y >. -> ( ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) <-> ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) |
| 76 | 71 75 | orbi12d | |- ( v = <. ( F ` y ) , y >. -> ( ( ( F ` x ) R ( 1st ` v ) \/ ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) <-> ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) |
| 77 | 67 76 | anbi12d | |- ( v = <. ( F ` y ) , y >. -> ( ( ( ( ( F ` x ) e. B /\ x e. A ) /\ v e. ( B X. A ) ) /\ ( ( F ` x ) R ( 1st ` v ) \/ ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) ) <-> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) ) |
| 78 | 21 26 63 77 6 | brab | |- ( <. ( F ` x ) , x >. Q <. ( F ` y ) , y >. <-> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) |
| 79 | ffvelcdm | |- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
|
| 80 | simpr | |- ( ( F : A --> B /\ x e. A ) -> x e. A ) |
|
| 81 | 79 80 | jca | |- ( ( F : A --> B /\ x e. A ) -> ( ( F ` x ) e. B /\ x e. A ) ) |
| 82 | ffvelcdm | |- ( ( F : A --> B /\ y e. A ) -> ( F ` y ) e. B ) |
|
| 83 | simpr | |- ( ( F : A --> B /\ y e. A ) -> y e. A ) |
|
| 84 | 82 83 | jca | |- ( ( F : A --> B /\ y e. A ) -> ( ( F ` y ) e. B /\ y e. A ) ) |
| 85 | 81 84 | anim12dan | |- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) ) |
| 86 | 85 | biantrurd | |- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) <-> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) ) |
| 87 | 78 86 | bitr4id | |- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( <. ( F ` x ) , x >. Q <. ( F ` y ) , y >. <-> ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) |
| 88 | 49 51 87 | 3bitrrd | |- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) <-> ( `' `' G ` x ) Q ( `' `' G ` y ) ) ) |
| 89 | 88 | pm5.32da | |- ( F : A --> B -> ( ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) <-> ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) ) ) |
| 90 | 89 | opabbidv | |- ( F : A --> B -> { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ) |
| 91 | 1 90 | eqtrid | |- ( F : A --> B -> T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ) |
| 92 | isoeq3 | |- ( T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } -> ( `' G Isom Q , T ( ran G , A ) <-> `' G Isom Q , { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ( ran G , A ) ) ) |
|
| 93 | 91 92 | syl | |- ( F : A --> B -> ( `' G Isom Q , T ( ran G , A ) <-> `' G Isom Q , { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ( ran G , A ) ) ) |
| 94 | 41 93 | imbitrrid | |- ( F : A --> B -> ( `' G : ran G -1-1-onto-> A -> `' G Isom Q , T ( ran G , A ) ) ) |
| 95 | 2 39 94 | sylc | |- ( ph -> `' G Isom Q , T ( ran G , A ) ) |
| 96 | isocnv | |- ( `' G Isom Q , T ( ran G , A ) -> `' `' G Isom T , Q ( A , ran G ) ) |
|
| 97 | 95 96 | syl | |- ( ph -> `' `' G Isom T , Q ( A , ran G ) ) |
| 98 | imacnvcnv | |- ( `' `' G " w ) = ( G " w ) |
|
| 99 | vex | |- w e. _V |
|
| 100 | xpexg | |- ( ( ( F " w ) e. _V /\ w e. _V ) -> ( ( F " w ) X. w ) e. _V ) |
|
| 101 | 5 99 100 | sylancl | |- ( ph -> ( ( F " w ) X. w ) e. _V ) |
| 102 | imadmres | |- ( G " dom ( G |` w ) ) = ( G " w ) |
|
| 103 | dmres | |- dom ( G |` w ) = ( w i^i dom G ) |
|
| 104 | 103 | elin2 | |- ( x e. dom ( G |` w ) <-> ( x e. w /\ x e. dom G ) ) |
| 105 | simprr | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. dom G ) |
|
| 106 | f1dm | |- ( G : A -1-1-> ( B X. A ) -> dom G = A ) |
|
| 107 | 2 36 106 | 3syl | |- ( ph -> dom G = A ) |
| 108 | 107 | adantr | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> dom G = A ) |
| 109 | 105 108 | eleqtrd | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. A ) |
| 110 | 109 22 | syl | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( G ` x ) = <. ( F ` x ) , x >. ) |
| 111 | 2 | ffnd | |- ( ph -> F Fn A ) |
| 112 | 111 | adantr | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> F Fn A ) |
| 113 | dmres | |- dom ( F |` w ) = ( w i^i dom F ) |
|
| 114 | inss2 | |- ( w i^i dom F ) C_ dom F |
|
| 115 | 112 | fndmd | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> dom F = A ) |
| 116 | 114 115 | sseqtrid | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( w i^i dom F ) C_ A ) |
| 117 | 113 116 | eqsstrid | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> dom ( F |` w ) C_ A ) |
| 118 | simprl | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. w ) |
|
| 119 | 109 115 | eleqtrrd | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. dom F ) |
| 120 | 113 | elin2 | |- ( x e. dom ( F |` w ) <-> ( x e. w /\ x e. dom F ) ) |
| 121 | 118 119 120 | sylanbrc | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. dom ( F |` w ) ) |
| 122 | fnfvima | |- ( ( F Fn A /\ dom ( F |` w ) C_ A /\ x e. dom ( F |` w ) ) -> ( F ` x ) e. ( F " dom ( F |` w ) ) ) |
|
| 123 | 112 117 121 122 | syl3anc | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( F ` x ) e. ( F " dom ( F |` w ) ) ) |
| 124 | imadmres | |- ( F " dom ( F |` w ) ) = ( F " w ) |
|
| 125 | 123 124 | eleqtrdi | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( F ` x ) e. ( F " w ) ) |
| 126 | 125 118 | opelxpd | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> <. ( F ` x ) , x >. e. ( ( F " w ) X. w ) ) |
| 127 | 110 126 | eqeltrd | |- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( G ` x ) e. ( ( F " w ) X. w ) ) |
| 128 | 104 127 | sylan2b | |- ( ( ph /\ x e. dom ( G |` w ) ) -> ( G ` x ) e. ( ( F " w ) X. w ) ) |
| 129 | 128 | ralrimiva | |- ( ph -> A. x e. dom ( G |` w ) ( G ` x ) e. ( ( F " w ) X. w ) ) |
| 130 | f1fun | |- ( G : A -1-1-> ( B X. A ) -> Fun G ) |
|
| 131 | 2 36 130 | 3syl | |- ( ph -> Fun G ) |
| 132 | resss | |- ( G |` w ) C_ G |
|
| 133 | dmss | |- ( ( G |` w ) C_ G -> dom ( G |` w ) C_ dom G ) |
|
| 134 | 132 133 | ax-mp | |- dom ( G |` w ) C_ dom G |
| 135 | funimass4 | |- ( ( Fun G /\ dom ( G |` w ) C_ dom G ) -> ( ( G " dom ( G |` w ) ) C_ ( ( F " w ) X. w ) <-> A. x e. dom ( G |` w ) ( G ` x ) e. ( ( F " w ) X. w ) ) ) |
|
| 136 | 131 134 135 | sylancl | |- ( ph -> ( ( G " dom ( G |` w ) ) C_ ( ( F " w ) X. w ) <-> A. x e. dom ( G |` w ) ( G ` x ) e. ( ( F " w ) X. w ) ) ) |
| 137 | 129 136 | mpbird | |- ( ph -> ( G " dom ( G |` w ) ) C_ ( ( F " w ) X. w ) ) |
| 138 | 102 137 | eqsstrrid | |- ( ph -> ( G " w ) C_ ( ( F " w ) X. w ) ) |
| 139 | 101 138 | ssexd | |- ( ph -> ( G " w ) e. _V ) |
| 140 | 98 139 | eqeltrid | |- ( ph -> ( `' `' G " w ) e. _V ) |
| 141 | 140 | alrimiv | |- ( ph -> A. w ( `' `' G " w ) e. _V ) |
| 142 | isowe2 | |- ( ( `' `' G Isom T , Q ( A , ran G ) /\ A. w ( `' `' G " w ) e. _V ) -> ( Q We ran G -> T We A ) ) |
|
| 143 | 97 141 142 | syl2anc | |- ( ph -> ( Q We ran G -> T We A ) ) |
| 144 | 17 143 | mpd | |- ( ph -> T We A ) |