This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak form of isowe that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isowe2 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝑆 We 𝐵 → 𝑅 We 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐻 “ 𝑥 ) = ( 𝐻 “ 𝑦 ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 “ 𝑥 ) ∈ V ↔ ( 𝐻 “ 𝑦 ) ∈ V ) ) |
| 4 | 3 | spvv | ⊢ ( ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V → ( 𝐻 “ 𝑦 ) ∈ V ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝐻 “ 𝑦 ) ∈ V ) |
| 6 | 1 5 | isofrlem | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
| 7 | isosolem | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝑆 Or 𝐵 → 𝑅 Or 𝐴 ) ) |
| 9 | 6 8 | anim12d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( ( 𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵 ) → ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) ) |
| 10 | df-we | ⊢ ( 𝑆 We 𝐵 ↔ ( 𝑆 Fr 𝐵 ∧ 𝑆 Or 𝐵 ) ) | |
| 11 | df-we | ⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) | |
| 12 | 9 10 11 | 3imtr4g | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ∀ 𝑥 ( 𝐻 “ 𝑥 ) ∈ V ) → ( 𝑆 We 𝐵 → 𝑅 We 𝐴 ) ) |