This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopab.1 | ⊢ 𝐴 ∈ V | |
| opelopab.2 | ⊢ 𝐵 ∈ V | ||
| opelopab.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| opelopab.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| brab.5 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | ||
| Assertion | brab | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopab.1 | ⊢ 𝐴 ∈ V | |
| 2 | opelopab.2 | ⊢ 𝐵 ∈ V | |
| 3 | opelopab.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | opelopab.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 5 | brab.5 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 6 | 3 4 5 | brabg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝑅 𝐵 ↔ 𝜒 ) ) |
| 7 | 1 2 6 | mp2an | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝜒 ) |