This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wexp.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } | |
| Assertion | wexp | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 We 𝐵 ) → 𝑇 We ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wexp.1 | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } | |
| 2 | wefr | ⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) | |
| 3 | wefr | ⊢ ( 𝑆 We 𝐵 → 𝑆 Fr 𝐵 ) | |
| 4 | 1 | frxp | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 We 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |
| 6 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 7 | weso | ⊢ ( 𝑆 We 𝐵 → 𝑆 Or 𝐵 ) | |
| 8 | 1 | soxp | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) ) |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 We 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) ) |
| 10 | df-we | ⊢ ( 𝑇 We ( 𝐴 × 𝐵 ) ↔ ( 𝑇 Fr ( 𝐴 × 𝐵 ) ∧ 𝑇 Or ( 𝐴 × 𝐵 ) ) ) | |
| 11 | 5 9 10 | sylanbrc | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑆 We 𝐵 ) → 𝑇 We ( 𝐴 × 𝐵 ) ) |