This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any one-to-one onto function determines an isomorphism with an induced relation S . (Contributed by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oiso2.1 | ⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) } | |
| Assertion | f1oiso2 | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oiso2.1 | ⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) } | |
| 2 | f1ocnvdm | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) | |
| 3 | 2 | adantrr | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
| 5 | f1ocnvdm | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ◡ 𝐻 ‘ 𝑦 ) ∈ 𝐴 ) | |
| 6 | 5 | adantrl | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ 𝐻 ‘ 𝑦 ) ∈ 𝐴 ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ( ◡ 𝐻 ‘ 𝑦 ) ∈ 𝐴 ) |
| 8 | f1ocnvfv2 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) = 𝑥 ) | |
| 9 | 8 | eqcomd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) |
| 10 | f1ocnvfv2 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) = 𝑦 ) | |
| 11 | 10 | eqcomd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) |
| 12 | 9 11 | anim12dan | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
| 14 | simp3 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( 𝐻 ‘ 𝑤 ) = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) | |
| 16 | 15 | eqeq2d | ⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( 𝑦 = ( 𝐻 ‘ 𝑤 ) ↔ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
| 17 | 16 | anbi2d | ⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ↔ ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) ) |
| 18 | breq2 | ⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ↔ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) | |
| 19 | 17 18 | anbi12d | ⊢ ( 𝑤 = ( ◡ 𝐻 ‘ 𝑦 ) → ( ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ↔ ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
| 20 | 19 | rspcev | ⊢ ( ( ( ◡ 𝐻 ‘ 𝑦 ) ∈ 𝐴 ∧ ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑦 ) ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) → ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) |
| 21 | 7 13 14 20 | syl12anc | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) |
| 22 | fveq2 | ⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ↔ 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) ) |
| 24 | 23 | anbi1d | ⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ↔ ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ) ) |
| 25 | breq1 | ⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( 𝑧 𝑅 𝑤 ↔ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) | |
| 26 | 24 25 | anbi12d | ⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ↔ ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) ) |
| 27 | 26 | rexbidv | ⊢ ( 𝑧 = ( ◡ 𝐻 ‘ 𝑥 ) → ( ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ↔ ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) ) |
| 28 | 27 | rspcev | ⊢ ( ( ( ◡ 𝐻 ‘ 𝑥 ) ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 𝑤 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) |
| 29 | 4 21 28 | syl2anc | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) |
| 30 | 29 | 3expib | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) ) |
| 31 | simp3ll | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑥 = ( 𝐻 ‘ 𝑧 ) ) | |
| 32 | simp1 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 33 | simp2l | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑧 ∈ 𝐴 ) | |
| 34 | f1of | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 35 | 34 | ffvelcdmda | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑧 ) ∈ 𝐵 ) |
| 36 | 32 33 35 | syl2anc | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( 𝐻 ‘ 𝑧 ) ∈ 𝐵 ) |
| 37 | 31 36 | eqeltrd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑥 ∈ 𝐵 ) |
| 38 | simp3lr | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑦 = ( 𝐻 ‘ 𝑤 ) ) | |
| 39 | simp2r | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑤 ∈ 𝐴 ) | |
| 40 | 34 | ffvelcdmda | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝐵 ) |
| 41 | 32 39 40 | syl2anc | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝐵 ) |
| 42 | 38 41 | eqeltrd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑦 ∈ 𝐵 ) |
| 43 | simp3r | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → 𝑧 𝑅 𝑤 ) | |
| 44 | 31 | eqcomd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( 𝐻 ‘ 𝑧 ) = 𝑥 ) |
| 45 | f1ocnvfv | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑧 ) = 𝑥 → ( ◡ 𝐻 ‘ 𝑥 ) = 𝑧 ) ) | |
| 46 | 32 33 45 | syl2anc | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ( 𝐻 ‘ 𝑧 ) = 𝑥 → ( ◡ 𝐻 ‘ 𝑥 ) = 𝑧 ) ) |
| 47 | 44 46 | mpd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) = 𝑧 ) |
| 48 | 38 | eqcomd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( 𝐻 ‘ 𝑤 ) = 𝑦 ) |
| 49 | f1ocnvfv | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑤 ) = 𝑦 → ( ◡ 𝐻 ‘ 𝑦 ) = 𝑤 ) ) | |
| 50 | 32 39 49 | syl2anc | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ( 𝐻 ‘ 𝑤 ) = 𝑦 → ( ◡ 𝐻 ‘ 𝑦 ) = 𝑤 ) ) |
| 51 | 48 50 | mpd | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ◡ 𝐻 ‘ 𝑦 ) = 𝑤 ) |
| 52 | 43 47 51 | 3brtr4d | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) |
| 53 | 37 42 52 | jca31 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) |
| 54 | 53 | 3exp | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) ) |
| 55 | 54 | rexlimdvv | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ) ) |
| 56 | 30 55 | impbid | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) ) ) |
| 57 | 56 | opabbidv | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) 𝑅 ( ◡ 𝐻 ‘ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) } ) |
| 58 | 1 57 | eqtrid | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) } ) |
| 59 | f1oiso | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 = ( 𝐻 ‘ 𝑧 ) ∧ 𝑦 = ( 𝐻 ‘ 𝑤 ) ) ∧ 𝑧 𝑅 𝑤 ) } ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 60 | 58 59 | mpdan | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |