This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | |- ( ph -> B e. ( fBas ` Y ) ) |
|
| fmfnfm.l | |- ( ph -> L e. ( Fil ` X ) ) |
||
| fmfnfm.f | |- ( ph -> F : Y --> X ) |
||
| fmfnfm.fm | |- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
||
| Assertion | fmfnfm | |- ( ph -> E. f e. ( Fil ` Y ) ( B C_ f /\ L = ( ( X FilMap F ) ` f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | |- ( ph -> B e. ( fBas ` Y ) ) |
|
| 2 | fmfnfm.l | |- ( ph -> L e. ( Fil ` X ) ) |
|
| 3 | fmfnfm.f | |- ( ph -> F : Y --> X ) |
|
| 4 | fmfnfm.fm | |- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
|
| 5 | fbsspw | |- ( B e. ( fBas ` Y ) -> B C_ ~P Y ) |
|
| 6 | 1 5 | syl | |- ( ph -> B C_ ~P Y ) |
| 7 | elfvdm | |- ( B e. ( fBas ` Y ) -> Y e. dom fBas ) |
|
| 8 | 1 7 | syl | |- ( ph -> Y e. dom fBas ) |
| 9 | ffn | |- ( F : Y --> X -> F Fn Y ) |
|
| 10 | dffn4 | |- ( F Fn Y <-> F : Y -onto-> ran F ) |
|
| 11 | 9 10 | sylib | |- ( F : Y --> X -> F : Y -onto-> ran F ) |
| 12 | foima | |- ( F : Y -onto-> ran F -> ( F " Y ) = ran F ) |
|
| 13 | 3 11 12 | 3syl | |- ( ph -> ( F " Y ) = ran F ) |
| 14 | filtop | |- ( L e. ( Fil ` X ) -> X e. L ) |
|
| 15 | 2 14 | syl | |- ( ph -> X e. L ) |
| 16 | fgcl | |- ( B e. ( fBas ` Y ) -> ( Y filGen B ) e. ( Fil ` Y ) ) |
|
| 17 | filtop | |- ( ( Y filGen B ) e. ( Fil ` Y ) -> Y e. ( Y filGen B ) ) |
|
| 18 | 1 16 17 | 3syl | |- ( ph -> Y e. ( Y filGen B ) ) |
| 19 | eqid | |- ( Y filGen B ) = ( Y filGen B ) |
|
| 20 | 19 | imaelfm | |- ( ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ Y e. ( Y filGen B ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` B ) ) |
| 21 | 15 1 3 18 20 | syl31anc | |- ( ph -> ( F " Y ) e. ( ( X FilMap F ) ` B ) ) |
| 22 | 13 21 | eqeltrrd | |- ( ph -> ran F e. ( ( X FilMap F ) ` B ) ) |
| 23 | 4 22 | sseldd | |- ( ph -> ran F e. L ) |
| 24 | rnelfmlem | |- ( ( ( Y e. dom fBas /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) |
|
| 25 | 8 2 3 23 24 | syl31anc | |- ( ph -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) |
| 26 | fbsspw | |- ( ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) -> ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y ) |
|
| 27 | 25 26 | syl | |- ( ph -> ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y ) |
| 28 | 6 27 | unssd | |- ( ph -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) C_ ~P Y ) |
| 29 | ssun1 | |- B C_ ( B u. ran ( x e. L |-> ( `' F " x ) ) ) |
|
| 30 | fbasne0 | |- ( B e. ( fBas ` Y ) -> B =/= (/) ) |
|
| 31 | 1 30 | syl | |- ( ph -> B =/= (/) ) |
| 32 | ssn0 | |- ( ( B C_ ( B u. ran ( x e. L |-> ( `' F " x ) ) ) /\ B =/= (/) ) -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) =/= (/) ) |
|
| 33 | 29 31 32 | sylancr | |- ( ph -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) =/= (/) ) |
| 34 | eqid | |- ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) |
|
| 35 | 34 | elrnmpt | |- ( t e. _V -> ( t e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L t = ( `' F " x ) ) ) |
| 36 | 35 | elv | |- ( t e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L t = ( `' F " x ) ) |
| 37 | 0nelfil | |- ( L e. ( Fil ` X ) -> -. (/) e. L ) |
|
| 38 | 2 37 | syl | |- ( ph -> -. (/) e. L ) |
| 39 | 38 | ad2antrr | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> -. (/) e. L ) |
| 40 | 2 | adantr | |- ( ( ph /\ s e. B ) -> L e. ( Fil ` X ) ) |
| 41 | 4 | adantr | |- ( ( ph /\ s e. B ) -> ( ( X FilMap F ) ` B ) C_ L ) |
| 42 | 15 1 3 | 3jca | |- ( ph -> ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) ) |
| 43 | 42 | adantr | |- ( ( ph /\ s e. B ) -> ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) ) |
| 44 | ssfg | |- ( B e. ( fBas ` Y ) -> B C_ ( Y filGen B ) ) |
|
| 45 | 1 44 | syl | |- ( ph -> B C_ ( Y filGen B ) ) |
| 46 | 45 | sselda | |- ( ( ph /\ s e. B ) -> s e. ( Y filGen B ) ) |
| 47 | 19 | imaelfm | |- ( ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ s e. ( Y filGen B ) ) -> ( F " s ) e. ( ( X FilMap F ) ` B ) ) |
| 48 | 43 46 47 | syl2anc | |- ( ( ph /\ s e. B ) -> ( F " s ) e. ( ( X FilMap F ) ` B ) ) |
| 49 | 41 48 | sseldd | |- ( ( ph /\ s e. B ) -> ( F " s ) e. L ) |
| 50 | 40 49 | jca | |- ( ( ph /\ s e. B ) -> ( L e. ( Fil ` X ) /\ ( F " s ) e. L ) ) |
| 51 | filin | |- ( ( L e. ( Fil ` X ) /\ ( F " s ) e. L /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
|
| 52 | 51 | 3expa | |- ( ( ( L e. ( Fil ` X ) /\ ( F " s ) e. L ) /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
| 53 | 50 52 | sylan | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( ( F " s ) i^i x ) e. L ) |
| 54 | eleq1 | |- ( ( ( F " s ) i^i x ) = (/) -> ( ( ( F " s ) i^i x ) e. L <-> (/) e. L ) ) |
|
| 55 | 53 54 | syl5ibcom | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( ( ( F " s ) i^i x ) = (/) -> (/) e. L ) ) |
| 56 | 39 55 | mtod | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> -. ( ( F " s ) i^i x ) = (/) ) |
| 57 | neq0 | |- ( -. ( ( F " s ) i^i x ) = (/) <-> E. t t e. ( ( F " s ) i^i x ) ) |
|
| 58 | elin | |- ( t e. ( ( F " s ) i^i x ) <-> ( t e. ( F " s ) /\ t e. x ) ) |
|
| 59 | ffun | |- ( F : Y --> X -> Fun F ) |
|
| 60 | fvelima | |- ( ( Fun F /\ t e. ( F " s ) ) -> E. y e. s ( F ` y ) = t ) |
|
| 61 | 60 | ex | |- ( Fun F -> ( t e. ( F " s ) -> E. y e. s ( F ` y ) = t ) ) |
| 62 | 3 59 61 | 3syl | |- ( ph -> ( t e. ( F " s ) -> E. y e. s ( F ` y ) = t ) ) |
| 63 | 62 | ad2antrr | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( t e. ( F " s ) -> E. y e. s ( F ` y ) = t ) ) |
| 64 | 3 59 | syl | |- ( ph -> Fun F ) |
| 65 | 64 | ad3antrrr | |- ( ( ( ( ph /\ s e. B ) /\ x e. L ) /\ y e. s ) -> Fun F ) |
| 66 | fbelss | |- ( ( B e. ( fBas ` Y ) /\ s e. B ) -> s C_ Y ) |
|
| 67 | 1 66 | sylan | |- ( ( ph /\ s e. B ) -> s C_ Y ) |
| 68 | 3 | fdmd | |- ( ph -> dom F = Y ) |
| 69 | 68 | adantr | |- ( ( ph /\ s e. B ) -> dom F = Y ) |
| 70 | 67 69 | sseqtrrd | |- ( ( ph /\ s e. B ) -> s C_ dom F ) |
| 71 | 70 | adantr | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> s C_ dom F ) |
| 72 | 71 | sselda | |- ( ( ( ( ph /\ s e. B ) /\ x e. L ) /\ y e. s ) -> y e. dom F ) |
| 73 | fvimacnv | |- ( ( Fun F /\ y e. dom F ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
|
| 74 | 65 72 73 | syl2anc | |- ( ( ( ( ph /\ s e. B ) /\ x e. L ) /\ y e. s ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
| 75 | inelcm | |- ( ( y e. s /\ y e. ( `' F " x ) ) -> ( s i^i ( `' F " x ) ) =/= (/) ) |
|
| 76 | 75 | ex | |- ( y e. s -> ( y e. ( `' F " x ) -> ( s i^i ( `' F " x ) ) =/= (/) ) ) |
| 77 | 76 | adantl | |- ( ( ( ( ph /\ s e. B ) /\ x e. L ) /\ y e. s ) -> ( y e. ( `' F " x ) -> ( s i^i ( `' F " x ) ) =/= (/) ) ) |
| 78 | 74 77 | sylbid | |- ( ( ( ( ph /\ s e. B ) /\ x e. L ) /\ y e. s ) -> ( ( F ` y ) e. x -> ( s i^i ( `' F " x ) ) =/= (/) ) ) |
| 79 | eleq1 | |- ( ( F ` y ) = t -> ( ( F ` y ) e. x <-> t e. x ) ) |
|
| 80 | 79 | imbi1d | |- ( ( F ` y ) = t -> ( ( ( F ` y ) e. x -> ( s i^i ( `' F " x ) ) =/= (/) ) <-> ( t e. x -> ( s i^i ( `' F " x ) ) =/= (/) ) ) ) |
| 81 | 78 80 | syl5ibcom | |- ( ( ( ( ph /\ s e. B ) /\ x e. L ) /\ y e. s ) -> ( ( F ` y ) = t -> ( t e. x -> ( s i^i ( `' F " x ) ) =/= (/) ) ) ) |
| 82 | 81 | rexlimdva | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( E. y e. s ( F ` y ) = t -> ( t e. x -> ( s i^i ( `' F " x ) ) =/= (/) ) ) ) |
| 83 | 63 82 | syld | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( t e. ( F " s ) -> ( t e. x -> ( s i^i ( `' F " x ) ) =/= (/) ) ) ) |
| 84 | 83 | impd | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( ( t e. ( F " s ) /\ t e. x ) -> ( s i^i ( `' F " x ) ) =/= (/) ) ) |
| 85 | 58 84 | biimtrid | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( t e. ( ( F " s ) i^i x ) -> ( s i^i ( `' F " x ) ) =/= (/) ) ) |
| 86 | 85 | exlimdv | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( E. t t e. ( ( F " s ) i^i x ) -> ( s i^i ( `' F " x ) ) =/= (/) ) ) |
| 87 | 57 86 | biimtrid | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( -. ( ( F " s ) i^i x ) = (/) -> ( s i^i ( `' F " x ) ) =/= (/) ) ) |
| 88 | 56 87 | mpd | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( s i^i ( `' F " x ) ) =/= (/) ) |
| 89 | ineq2 | |- ( t = ( `' F " x ) -> ( s i^i t ) = ( s i^i ( `' F " x ) ) ) |
|
| 90 | 89 | neeq1d | |- ( t = ( `' F " x ) -> ( ( s i^i t ) =/= (/) <-> ( s i^i ( `' F " x ) ) =/= (/) ) ) |
| 91 | 88 90 | syl5ibrcom | |- ( ( ( ph /\ s e. B ) /\ x e. L ) -> ( t = ( `' F " x ) -> ( s i^i t ) =/= (/) ) ) |
| 92 | 91 | rexlimdva | |- ( ( ph /\ s e. B ) -> ( E. x e. L t = ( `' F " x ) -> ( s i^i t ) =/= (/) ) ) |
| 93 | 36 92 | biimtrid | |- ( ( ph /\ s e. B ) -> ( t e. ran ( x e. L |-> ( `' F " x ) ) -> ( s i^i t ) =/= (/) ) ) |
| 94 | 93 | expimpd | |- ( ph -> ( ( s e. B /\ t e. ran ( x e. L |-> ( `' F " x ) ) ) -> ( s i^i t ) =/= (/) ) ) |
| 95 | 94 | ralrimivv | |- ( ph -> A. s e. B A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) =/= (/) ) |
| 96 | fbunfip | |- ( ( B e. ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) -> ( -. (/) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) <-> A. s e. B A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) =/= (/) ) ) |
|
| 97 | 1 25 96 | syl2anc | |- ( ph -> ( -. (/) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) <-> A. s e. B A. t e. ran ( x e. L |-> ( `' F " x ) ) ( s i^i t ) =/= (/) ) ) |
| 98 | 95 97 | mpbird | |- ( ph -> -. (/) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 99 | fsubbas | |- ( Y e. dom fBas -> ( ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) e. ( fBas ` Y ) <-> ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) C_ ~P Y /\ ( B u. ran ( x e. L |-> ( `' F " x ) ) ) =/= (/) /\ -. (/) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) |
|
| 100 | 1 7 99 | 3syl | |- ( ph -> ( ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) e. ( fBas ` Y ) <-> ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) C_ ~P Y /\ ( B u. ran ( x e. L |-> ( `' F " x ) ) ) =/= (/) /\ -. (/) e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) |
| 101 | 28 33 98 100 | mpbir3and | |- ( ph -> ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) e. ( fBas ` Y ) ) |
| 102 | fgcl | |- ( ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) e. ( fBas ` Y ) -> ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) e. ( Fil ` Y ) ) |
|
| 103 | 101 102 | syl | |- ( ph -> ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) e. ( Fil ` Y ) ) |
| 104 | unexg | |- ( ( B e. ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V ) |
|
| 105 | 1 25 104 | syl2anc | |- ( ph -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V ) |
| 106 | ssfii | |- ( ( B u. ran ( x e. L |-> ( `' F " x ) ) ) e. _V -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
|
| 107 | 105 106 | syl | |- ( ph -> ( B u. ran ( x e. L |-> ( `' F " x ) ) ) C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 108 | 107 | unssad | |- ( ph -> B C_ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
| 109 | ssfg | |- ( ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) e. ( fBas ` Y ) -> ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) C_ ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) |
|
| 110 | 101 109 | syl | |- ( ph -> ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) C_ ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) |
| 111 | 108 110 | sstrd | |- ( ph -> B C_ ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) |
| 112 | 1 2 3 4 | fmfnfmlem4 | |- ( ph -> ( t e. L <-> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |
| 113 | elfm | |- ( ( X e. L /\ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) e. ( fBas ` Y ) /\ F : Y --> X ) -> ( t e. ( ( X FilMap F ) ` ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) <-> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |
|
| 114 | 15 101 3 113 | syl3anc | |- ( ph -> ( t e. ( ( X FilMap F ) ` ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) <-> ( t C_ X /\ E. s e. ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ( F " s ) C_ t ) ) ) |
| 115 | 112 114 | bitr4d | |- ( ph -> ( t e. L <-> t e. ( ( X FilMap F ) ` ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) |
| 116 | 115 | eqrdv | |- ( ph -> L = ( ( X FilMap F ) ` ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) |
| 117 | eqid | |- ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) = ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
|
| 118 | 117 | fmfg | |- ( ( X e. L /\ ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) e. ( fBas ` Y ) /\ F : Y --> X ) -> ( ( X FilMap F ) ` ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) = ( ( X FilMap F ) ` ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) |
| 119 | 15 101 3 118 | syl3anc | |- ( ph -> ( ( X FilMap F ) ` ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) = ( ( X FilMap F ) ` ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) |
| 120 | 116 119 | eqtrd | |- ( ph -> L = ( ( X FilMap F ) ` ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) |
| 121 | sseq2 | |- ( f = ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( B C_ f <-> B C_ ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) |
|
| 122 | fveq2 | |- ( f = ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( ( X FilMap F ) ` f ) = ( ( X FilMap F ) ` ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) |
|
| 123 | 122 | eqeq2d | |- ( f = ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( L = ( ( X FilMap F ) ` f ) <-> L = ( ( X FilMap F ) ` ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) ) |
| 124 | 121 123 | anbi12d | |- ( f = ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) -> ( ( B C_ f /\ L = ( ( X FilMap F ) ` f ) ) <-> ( B C_ ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) /\ L = ( ( X FilMap F ) ` ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) ) ) |
| 125 | 124 | rspcev | |- ( ( ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) e. ( Fil ` Y ) /\ ( B C_ ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) /\ L = ( ( X FilMap F ) ` ( Y filGen ( fi ` ( B u. ran ( x e. L |-> ( `' F " x ) ) ) ) ) ) ) ) -> E. f e. ( Fil ` Y ) ( B C_ f /\ L = ( ( X FilMap F ) ` f ) ) ) |
| 126 | 103 111 120 125 | syl12anc | |- ( ph -> E. f e. ( Fil ` Y ) ( B C_ f /\ L = ( ( X FilMap F ) ` f ) ) ) |