This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2lem12 | ⊢ ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) → ¬ 𝐵 ∈ FinIII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → 𝐵 ∈ FinIII ) | |
| 2 | simpll1 | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → 𝐴 ⊆ 𝒫 𝐵 ) | |
| 3 | 2 | adantr | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) ∧ 𝑒 ∈ ω ) → 𝐴 ⊆ 𝒫 𝐵 ) |
| 4 | ssrab2 | ⊢ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ⊆ 𝐴 | |
| 5 | 4 | unissi | ⊢ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ⊆ ∪ 𝐴 |
| 6 | sspwuni | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵 ) | |
| 7 | 6 | biimpi | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ∪ 𝐴 ⊆ 𝐵 ) |
| 8 | 5 7 | sstrid | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ⊆ 𝐵 ) |
| 9 | 3 8 | syl | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) ∧ 𝑒 ∈ ω ) → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ⊆ 𝐵 ) |
| 10 | elpw2g | ⊢ ( 𝐵 ∈ FinIII → ( ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ∈ 𝒫 𝐵 ↔ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ⊆ 𝐵 ) ) | |
| 11 | 10 | ad2antlr | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) ∧ 𝑒 ∈ ω ) → ( ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ∈ 𝒫 𝐵 ↔ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ⊆ 𝐵 ) ) |
| 12 | 9 11 | mpbird | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) ∧ 𝑒 ∈ ω ) → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ∈ 𝒫 𝐵 ) |
| 13 | 12 | fmpttd | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) : ω ⟶ 𝒫 𝐵 ) |
| 14 | vex | ⊢ 𝑑 ∈ V | |
| 15 | 14 | sucex | ⊢ suc 𝑑 ∈ V |
| 16 | sssucid | ⊢ 𝑑 ⊆ suc 𝑑 | |
| 17 | ssdomg | ⊢ ( suc 𝑑 ∈ V → ( 𝑑 ⊆ suc 𝑑 → 𝑑 ≼ suc 𝑑 ) ) | |
| 18 | 15 16 17 | mp2 | ⊢ 𝑑 ≼ suc 𝑑 |
| 19 | domtr | ⊢ ( ( 𝑓 ≼ 𝑑 ∧ 𝑑 ≼ suc 𝑑 ) → 𝑓 ≼ suc 𝑑 ) | |
| 20 | 18 19 | mpan2 | ⊢ ( 𝑓 ≼ 𝑑 → 𝑓 ≼ suc 𝑑 ) |
| 21 | 20 | a1i | ⊢ ( 𝑓 ∈ 𝐴 → ( 𝑓 ≼ 𝑑 → 𝑓 ≼ suc 𝑑 ) ) |
| 22 | 21 | ss2rabi | ⊢ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ⊆ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } |
| 23 | uniss | ⊢ ( { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ⊆ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ⊆ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ) | |
| 24 | 22 23 | mp1i | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) ∧ 𝑑 ∈ ω ) → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ⊆ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ) |
| 25 | id | ⊢ ( 𝑑 ∈ ω → 𝑑 ∈ ω ) | |
| 26 | pwexg | ⊢ ( 𝐵 ∈ FinIII → 𝒫 𝐵 ∈ V ) | |
| 27 | 26 | adantl | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → 𝒫 𝐵 ∈ V ) |
| 28 | 27 2 | ssexd | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → 𝐴 ∈ V ) |
| 29 | rabexg | ⊢ ( 𝐴 ∈ V → { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ∈ V ) | |
| 30 | uniexg | ⊢ ( { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ∈ V → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ∈ V ) | |
| 31 | 28 29 30 | 3syl | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ∈ V ) |
| 32 | breq2 | ⊢ ( 𝑒 = 𝑑 → ( 𝑓 ≼ 𝑒 ↔ 𝑓 ≼ 𝑑 ) ) | |
| 33 | 32 | rabbidv | ⊢ ( 𝑒 = 𝑑 → { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } = { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ) |
| 34 | 33 | unieqd | ⊢ ( 𝑒 = 𝑑 → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } = ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ) |
| 35 | eqid | ⊢ ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) | |
| 36 | 34 35 | fvmptg | ⊢ ( ( 𝑑 ∈ ω ∧ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ∈ V ) → ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ 𝑑 ) = ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ) |
| 37 | 25 31 36 | syl2anr | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) ∧ 𝑑 ∈ ω ) → ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ 𝑑 ) = ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑 } ) |
| 38 | peano2 | ⊢ ( 𝑑 ∈ ω → suc 𝑑 ∈ ω ) | |
| 39 | rabexg | ⊢ ( 𝐴 ∈ V → { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ∈ V ) | |
| 40 | uniexg | ⊢ ( { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ∈ V → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ∈ V ) | |
| 41 | 28 39 40 | 3syl | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ∈ V ) |
| 42 | breq2 | ⊢ ( 𝑒 = suc 𝑑 → ( 𝑓 ≼ 𝑒 ↔ 𝑓 ≼ suc 𝑑 ) ) | |
| 43 | 42 | rabbidv | ⊢ ( 𝑒 = suc 𝑑 → { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } = { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ) |
| 44 | 43 | unieqd | ⊢ ( 𝑒 = suc 𝑑 → ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } = ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ) |
| 45 | 44 35 | fvmptg | ⊢ ( ( suc 𝑑 ∈ ω ∧ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ∈ V ) → ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ suc 𝑑 ) = ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ) |
| 46 | 38 41 45 | syl2anr | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) ∧ 𝑑 ∈ ω ) → ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ suc 𝑑 ) = ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑 } ) |
| 47 | 24 37 46 | 3sstr4d | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) ∧ 𝑑 ∈ ω ) → ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ 𝑑 ) ⊆ ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ suc 𝑑 ) ) |
| 48 | 47 | ralrimiva | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ∀ 𝑑 ∈ ω ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ 𝑑 ) ⊆ ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ suc 𝑑 ) ) |
| 49 | fin34i | ⊢ ( ( 𝐵 ∈ FinIII ∧ ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) : ω ⟶ 𝒫 𝐵 ∧ ∀ 𝑑 ∈ ω ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ 𝑑 ) ⊆ ( ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ‘ suc 𝑑 ) ) → ∪ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ∈ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ) | |
| 50 | 1 13 48 49 | syl3anc | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ∪ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ∈ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ) |
| 51 | fin1a2lem11 | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) ) | |
| 52 | 51 | adantrr | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) → ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) ) |
| 53 | 52 | 3ad2antl2 | ⊢ ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) → ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) ) |
| 54 | 53 | adantr | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) ) |
| 55 | simpll3 | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ¬ ∪ 𝐴 ∈ 𝐴 ) | |
| 56 | simplrr | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → 𝐴 ≠ ∅ ) | |
| 57 | sspwuni | ⊢ ( 𝐴 ⊆ 𝒫 ∅ ↔ ∪ 𝐴 ⊆ ∅ ) | |
| 58 | ss0b | ⊢ ( ∪ 𝐴 ⊆ ∅ ↔ ∪ 𝐴 = ∅ ) | |
| 59 | 57 58 | bitri | ⊢ ( 𝐴 ⊆ 𝒫 ∅ ↔ ∪ 𝐴 = ∅ ) |
| 60 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 61 | 60 | sseq2i | ⊢ ( 𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ { ∅ } ) |
| 62 | sssn | ⊢ ( 𝐴 ⊆ { ∅ } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { ∅ } ) ) | |
| 63 | 61 62 | bitri | ⊢ ( 𝐴 ⊆ 𝒫 ∅ ↔ ( 𝐴 = ∅ ∨ 𝐴 = { ∅ } ) ) |
| 64 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 65 | 0ex | ⊢ ∅ ∈ V | |
| 66 | 65 | unisn | ⊢ ∪ { ∅ } = ∅ |
| 67 | 65 | snid | ⊢ ∅ ∈ { ∅ } |
| 68 | 66 67 | eqeltri | ⊢ ∪ { ∅ } ∈ { ∅ } |
| 69 | unieq | ⊢ ( 𝐴 = { ∅ } → ∪ 𝐴 = ∪ { ∅ } ) | |
| 70 | id | ⊢ ( 𝐴 = { ∅ } → 𝐴 = { ∅ } ) | |
| 71 | 69 70 | eleq12d | ⊢ ( 𝐴 = { ∅ } → ( ∪ 𝐴 ∈ 𝐴 ↔ ∪ { ∅ } ∈ { ∅ } ) ) |
| 72 | 68 71 | mpbiri | ⊢ ( 𝐴 = { ∅ } → ∪ 𝐴 ∈ 𝐴 ) |
| 73 | 72 | orim2i | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = { ∅ } ) → ( 𝐴 = ∅ ∨ ∪ 𝐴 ∈ 𝐴 ) ) |
| 74 | 73 | ord | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = { ∅ } ) → ( ¬ 𝐴 = ∅ → ∪ 𝐴 ∈ 𝐴 ) ) |
| 75 | 64 74 | biimtrid | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = { ∅ } ) → ( 𝐴 ≠ ∅ → ∪ 𝐴 ∈ 𝐴 ) ) |
| 76 | 63 75 | sylbi | ⊢ ( 𝐴 ⊆ 𝒫 ∅ → ( 𝐴 ≠ ∅ → ∪ 𝐴 ∈ 𝐴 ) ) |
| 77 | 59 76 | sylbir | ⊢ ( ∪ 𝐴 = ∅ → ( 𝐴 ≠ ∅ → ∪ 𝐴 ∈ 𝐴 ) ) |
| 78 | 77 | com12 | ⊢ ( 𝐴 ≠ ∅ → ( ∪ 𝐴 = ∅ → ∪ 𝐴 ∈ 𝐴 ) ) |
| 79 | 78 | con3d | ⊢ ( 𝐴 ≠ ∅ → ( ¬ ∪ 𝐴 ∈ 𝐴 → ¬ ∪ 𝐴 = ∅ ) ) |
| 80 | 56 55 79 | sylc | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ¬ ∪ 𝐴 = ∅ ) |
| 81 | ioran | ⊢ ( ¬ ( ∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 = ∅ ) ↔ ( ¬ ∪ 𝐴 ∈ 𝐴 ∧ ¬ ∪ 𝐴 = ∅ ) ) | |
| 82 | 55 80 81 | sylanbrc | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ¬ ( ∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 = ∅ ) ) |
| 83 | uniun | ⊢ ∪ ( 𝐴 ∪ { ∅ } ) = ( ∪ 𝐴 ∪ ∪ { ∅ } ) | |
| 84 | 66 | uneq2i | ⊢ ( ∪ 𝐴 ∪ ∪ { ∅ } ) = ( ∪ 𝐴 ∪ ∅ ) |
| 85 | un0 | ⊢ ( ∪ 𝐴 ∪ ∅ ) = ∪ 𝐴 | |
| 86 | 83 84 85 | 3eqtri | ⊢ ∪ ( 𝐴 ∪ { ∅ } ) = ∪ 𝐴 |
| 87 | 86 | eleq1i | ⊢ ( ∪ ( 𝐴 ∪ { ∅ } ) ∈ ( 𝐴 ∪ { ∅ } ) ↔ ∪ 𝐴 ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 88 | elun | ⊢ ( ∪ 𝐴 ∈ ( 𝐴 ∪ { ∅ } ) ↔ ( ∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 ∈ { ∅ } ) ) | |
| 89 | 65 | elsn2 | ⊢ ( ∪ 𝐴 ∈ { ∅ } ↔ ∪ 𝐴 = ∅ ) |
| 90 | 89 | orbi2i | ⊢ ( ( ∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 ∈ { ∅ } ) ↔ ( ∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 = ∅ ) ) |
| 91 | 87 88 90 | 3bitri | ⊢ ( ∪ ( 𝐴 ∪ { ∅ } ) ∈ ( 𝐴 ∪ { ∅ } ) ↔ ( ∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 = ∅ ) ) |
| 92 | 82 91 | sylnibr | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ¬ ∪ ( 𝐴 ∪ { ∅ } ) ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 93 | unieq | ⊢ ( ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) → ∪ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ∪ ( 𝐴 ∪ { ∅ } ) ) | |
| 94 | id | ⊢ ( ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) → ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) ) | |
| 95 | 93 94 | eleq12d | ⊢ ( ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) → ( ∪ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ∈ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ↔ ∪ ( 𝐴 ∪ { ∅ } ) ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 96 | 95 | notbid | ⊢ ( ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) → ( ¬ ∪ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ∈ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ↔ ¬ ∪ ( 𝐴 ∪ { ∅ } ) ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 97 | 92 96 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ( ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) = ( 𝐴 ∪ { ∅ } ) → ¬ ∪ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ∈ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ) ) |
| 98 | 54 97 | mpd | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) ∧ 𝐵 ∈ FinIII ) → ¬ ∪ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ∈ ran ( 𝑒 ∈ ω ↦ ∪ { 𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒 } ) ) |
| 99 | 50 98 | pm2.65da | ⊢ ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅ ) ) → ¬ 𝐵 ∈ FinIII ) |