This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2lem11 | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ran ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) = ( 𝐴 ∪ { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) = ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) | |
| 2 | 1 | rnmpt | ⊢ ran ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) = { 𝑑 ∣ ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } } |
| 3 | unieq | ⊢ ( { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∪ ∅ ) | |
| 4 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 5 | 3 4 | eqtrdi | ⊢ ( { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) |
| 6 | 5 | adantl | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | 7 | elsn2 | ⊢ ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ↔ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) |
| 9 | 6 8 | sylibr | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) |
| 10 | 9 | olcd | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∅ ) → ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ∨ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) |
| 11 | ssrab2 | ⊢ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ⊆ 𝐴 | |
| 12 | simpr | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) | |
| 13 | fin1a2lem9 | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ∧ 𝑏 ∈ ω ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ Fin ) | |
| 14 | 13 | ad4ant123 | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ Fin ) |
| 15 | simplll | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → [⊊] Or 𝐴 ) | |
| 16 | soss | ⊢ ( { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ⊆ 𝐴 → ( [⊊] Or 𝐴 → [⊊] Or { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) | |
| 17 | 11 15 16 | mpsyl | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → [⊊] Or { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
| 18 | fin1a2lem10 | ⊢ ( ( { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ Fin ∧ [⊊] Or { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) | |
| 19 | 12 14 17 18 | syl3anc | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
| 20 | 11 19 | sselid | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ) |
| 21 | 20 | orcd | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) ∧ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ≠ ∅ ) → ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ∨ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) |
| 22 | 10 21 | pm2.61dane | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) → ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ∨ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) |
| 23 | eleq1 | ⊢ ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( 𝑑 ∈ 𝐴 ↔ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ) ) | |
| 24 | eleq1 | ⊢ ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( 𝑑 ∈ { ∅ } ↔ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) | |
| 25 | 23 24 | orbi12d | ⊢ ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ↔ ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ 𝐴 ∨ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ∈ { ∅ } ) ) ) |
| 26 | 22 25 | syl5ibrcom | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑏 ∈ ω ) → ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ) ) |
| 27 | 26 | rexlimdva | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } → ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ) ) |
| 28 | simpr | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝐴 ⊆ Fin ) | |
| 29 | 28 | sselda | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ∈ Fin ) |
| 30 | ficardom | ⊢ ( 𝑑 ∈ Fin → ( card ‘ 𝑑 ) ∈ ω ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ( card ‘ 𝑑 ) ∈ ω ) |
| 32 | breq1 | ⊢ ( 𝑐 = 𝑑 → ( 𝑐 ≼ ( card ‘ 𝑑 ) ↔ 𝑑 ≼ ( card ‘ 𝑑 ) ) ) | |
| 33 | simpr | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ∈ 𝐴 ) | |
| 34 | ficardid | ⊢ ( 𝑑 ∈ Fin → ( card ‘ 𝑑 ) ≈ 𝑑 ) | |
| 35 | 29 34 | syl | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ( card ‘ 𝑑 ) ≈ 𝑑 ) |
| 36 | ensym | ⊢ ( ( card ‘ 𝑑 ) ≈ 𝑑 → 𝑑 ≈ ( card ‘ 𝑑 ) ) | |
| 37 | endom | ⊢ ( 𝑑 ≈ ( card ‘ 𝑑 ) → 𝑑 ≼ ( card ‘ 𝑑 ) ) | |
| 38 | 35 36 37 | 3syl | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ≼ ( card ‘ 𝑑 ) ) |
| 39 | 32 33 38 | elrabd | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
| 40 | elssuni | ⊢ ( 𝑑 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } → 𝑑 ⊆ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) | |
| 41 | 39 40 | syl | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ⊆ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
| 42 | breq1 | ⊢ ( 𝑐 = 𝑏 → ( 𝑐 ≼ ( card ‘ 𝑑 ) ↔ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) | |
| 43 | 42 | elrab | ⊢ ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ↔ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) |
| 44 | simprr | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ≼ ( card ‘ 𝑑 ) ) | |
| 45 | 35 | adantr | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → ( card ‘ 𝑑 ) ≈ 𝑑 ) |
| 46 | domentr | ⊢ ( ( 𝑏 ≼ ( card ‘ 𝑑 ) ∧ ( card ‘ 𝑑 ) ≈ 𝑑 ) → 𝑏 ≼ 𝑑 ) | |
| 47 | 44 45 46 | syl2anc | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ≼ 𝑑 ) |
| 48 | simpllr | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝐴 ⊆ Fin ) | |
| 49 | simprl | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ∈ 𝐴 ) | |
| 50 | 48 49 | sseldd | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ∈ Fin ) |
| 51 | 29 | adantr | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑑 ∈ Fin ) |
| 52 | simplll | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → [⊊] Or 𝐴 ) | |
| 53 | simplr | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑑 ∈ 𝐴 ) | |
| 54 | sorpssi | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) → ( 𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏 ) ) | |
| 55 | 52 49 53 54 | syl12anc | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → ( 𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏 ) ) |
| 56 | fincssdom | ⊢ ( ( 𝑏 ∈ Fin ∧ 𝑑 ∈ Fin ∧ ( 𝑏 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑏 ) ) → ( 𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑 ) ) | |
| 57 | 50 51 55 56 | syl3anc | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → ( 𝑏 ≼ 𝑑 ↔ 𝑏 ⊆ 𝑑 ) ) |
| 58 | 47 57 | mpbid | ⊢ ( ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) ) → 𝑏 ⊆ 𝑑 ) |
| 59 | 58 | ex | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ( card ‘ 𝑑 ) ) → 𝑏 ⊆ 𝑑 ) ) |
| 60 | 43 59 | biimtrid | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } → 𝑏 ⊆ 𝑑 ) ) |
| 61 | 60 | ralrimiv | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ∀ 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } 𝑏 ⊆ 𝑑 ) |
| 62 | unissb | ⊢ ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ⊆ 𝑑 ↔ ∀ 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } 𝑏 ⊆ 𝑑 ) | |
| 63 | 61 62 | sylibr | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ⊆ 𝑑 ) |
| 64 | 41 63 | eqssd | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
| 65 | breq2 | ⊢ ( 𝑏 = ( card ‘ 𝑑 ) → ( 𝑐 ≼ 𝑏 ↔ 𝑐 ≼ ( card ‘ 𝑑 ) ) ) | |
| 66 | 65 | rabbidv | ⊢ ( 𝑏 = ( card ‘ 𝑑 ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
| 67 | 66 | unieqd | ⊢ ( 𝑏 = ( card ‘ 𝑑 ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) |
| 68 | 67 | rspceeqv | ⊢ ( ( ( card ‘ 𝑑 ) ∈ ω ∧ 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ( card ‘ 𝑑 ) } ) → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
| 69 | 31 64 68 | syl2anc | ⊢ ( ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) ∧ 𝑑 ∈ 𝐴 ) → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
| 70 | 69 | ex | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑑 ∈ 𝐴 → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
| 71 | velsn | ⊢ ( 𝑑 ∈ { ∅ } ↔ 𝑑 = ∅ ) | |
| 72 | peano1 | ⊢ ∅ ∈ ω | |
| 73 | dom0 | ⊢ ( 𝑏 ≼ ∅ ↔ 𝑏 = ∅ ) | |
| 74 | 73 | biimpi | ⊢ ( 𝑏 ≼ ∅ → 𝑏 = ∅ ) |
| 75 | 74 | adantl | ⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅ ) → 𝑏 = ∅ ) |
| 76 | 75 | a1i | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅ ) → 𝑏 = ∅ ) ) |
| 77 | breq1 | ⊢ ( 𝑐 = 𝑏 → ( 𝑐 ≼ ∅ ↔ 𝑏 ≼ ∅ ) ) | |
| 78 | 77 | elrab | ⊢ ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ↔ ( 𝑏 ∈ 𝐴 ∧ 𝑏 ≼ ∅ ) ) |
| 79 | velsn | ⊢ ( 𝑏 ∈ { ∅ } ↔ 𝑏 = ∅ ) | |
| 80 | 76 78 79 | 3imtr4g | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑏 ∈ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } → 𝑏 ∈ { ∅ } ) ) |
| 81 | 80 | ssrdv | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ⊆ { ∅ } ) |
| 82 | uni0b | ⊢ ( ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } = ∅ ↔ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ⊆ { ∅ } ) | |
| 83 | 81 82 | sylibr | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } = ∅ ) |
| 84 | 83 | eqcomd | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ) |
| 85 | breq2 | ⊢ ( 𝑏 = ∅ → ( 𝑐 ≼ 𝑏 ↔ 𝑐 ≼ ∅ ) ) | |
| 86 | 85 | rabbidv | ⊢ ( 𝑏 = ∅ → { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ) |
| 87 | 86 | unieqd | ⊢ ( 𝑏 = ∅ → ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ) |
| 88 | 87 | rspceeqv | ⊢ ( ( ∅ ∈ ω ∧ ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ ∅ } ) → ∃ 𝑏 ∈ ω ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
| 89 | 72 84 88 | sylancr | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ∃ 𝑏 ∈ ω ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) |
| 90 | eqeq1 | ⊢ ( 𝑑 = ∅ → ( 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ↔ ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) | |
| 91 | 90 | rexbidv | ⊢ ( 𝑑 = ∅ → ( ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ↔ ∃ 𝑏 ∈ ω ∅ = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
| 92 | 89 91 | syl5ibrcom | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑑 = ∅ → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
| 93 | 71 92 | biimtrid | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑑 ∈ { ∅ } → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
| 94 | 70 93 | jaod | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) → ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) ) |
| 95 | 27 94 | impbid | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ↔ ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ) ) |
| 96 | elun | ⊢ ( 𝑑 ∈ ( 𝐴 ∪ { ∅ } ) ↔ ( 𝑑 ∈ 𝐴 ∨ 𝑑 ∈ { ∅ } ) ) | |
| 97 | 95 96 | bitr4di | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ( ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ↔ 𝑑 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 98 | 97 | eqabcdv | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → { 𝑑 ∣ ∃ 𝑏 ∈ ω 𝑑 = ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } } = ( 𝐴 ∪ { ∅ } ) ) |
| 99 | 2 98 | eqtrid | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin ) → ran ( 𝑏 ∈ ω ↦ ∪ { 𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏 } ) = ( 𝐴 ∪ { ∅ } ) ) |