This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compute the power set of the empty set. Theorem 89 of Suppes p. 47. (Contributed by NM, 5-Aug-1993) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pw0 | ⊢ 𝒫 ∅ = { ∅ } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b | ⊢ ( 𝑥 ⊆ ∅ ↔ 𝑥 = ∅ ) | |
| 2 | 1 | abbii | ⊢ { 𝑥 ∣ 𝑥 ⊆ ∅ } = { 𝑥 ∣ 𝑥 = ∅ } |
| 3 | df-pw | ⊢ 𝒫 ∅ = { 𝑥 ∣ 𝑥 ⊆ ∅ } | |
| 4 | df-sn | ⊢ { ∅ } = { 𝑥 ∣ 𝑥 = ∅ } | |
| 5 | 2 3 4 | 3eqtr4i | ⊢ 𝒫 ∅ = { ∅ } |