This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every Ia-finite set is II-finite. Theorem 1 of Levy58, p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2 | ⊢ ( 𝐴 ∈ FinIa → 𝐴 ∈ FinII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴 ) | |
| 2 | fin1ai | ⊢ ( ( 𝐴 ∈ FinIa ∧ 𝑏 ⊆ 𝐴 ) → ( 𝑏 ∈ Fin ∨ ( 𝐴 ∖ 𝑏 ) ∈ Fin ) ) | |
| 3 | fin12 | ⊢ ( ( 𝐴 ∖ 𝑏 ) ∈ Fin → ( 𝐴 ∖ 𝑏 ) ∈ FinII ) | |
| 4 | 3 | orim2i | ⊢ ( ( 𝑏 ∈ Fin ∨ ( 𝐴 ∖ 𝑏 ) ∈ Fin ) → ( 𝑏 ∈ Fin ∨ ( 𝐴 ∖ 𝑏 ) ∈ FinII ) ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐴 ∈ FinIa ∧ 𝑏 ⊆ 𝐴 ) → ( 𝑏 ∈ Fin ∨ ( 𝐴 ∖ 𝑏 ) ∈ FinII ) ) |
| 6 | 1 5 | sylan2 | ⊢ ( ( 𝐴 ∈ FinIa ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑏 ∈ Fin ∨ ( 𝐴 ∖ 𝑏 ) ∈ FinII ) ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝐴 ∈ FinIa → ∀ 𝑏 ∈ 𝒫 𝐴 ( 𝑏 ∈ Fin ∨ ( 𝐴 ∖ 𝑏 ) ∈ FinII ) ) |
| 8 | fin1a2s | ⊢ ( ( 𝐴 ∈ FinIa ∧ ∀ 𝑏 ∈ 𝒫 𝐴 ( 𝑏 ∈ Fin ∨ ( 𝐴 ∖ 𝑏 ) ∈ FinII ) ) → 𝐴 ∈ FinII ) | |
| 9 | 7 8 | mpdan | ⊢ ( 𝐴 ∈ FinIa → 𝐴 ∈ FinII ) |