This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1a2lem13 | ⊢ ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( 𝐵 ∖ 𝐶 ) ∈ FinII ) | |
| 2 | simpll1 | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → 𝐴 ⊆ 𝒫 𝐵 ) | |
| 3 | ssel2 | ⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ∈ 𝒫 𝐵 ) | |
| 4 | 3 | elpwid | ⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → 𝑔 ⊆ 𝐵 ) |
| 5 | 4 | ssdifd | ⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝐵 ∖ 𝐶 ) ) |
| 6 | sseq1 | ⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝐵 ∖ 𝐶 ) ) ) | |
| 7 | 5 6 | syl5ibrcom | ⊢ ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) ) |
| 8 | 7 | rexlimdva | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ( ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) → 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) ) |
| 9 | eqid | ⊢ ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) | |
| 10 | 9 | elrnmpt | ⊢ ( 𝑓 ∈ V → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) ) ) |
| 11 | 10 | elv | ⊢ ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) ) |
| 12 | velpw | ⊢ ( 𝑓 ∈ 𝒫 ( 𝐵 ∖ 𝐶 ) ↔ 𝑓 ⊆ ( 𝐵 ∖ 𝐶 ) ) | |
| 13 | 8 11 12 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → 𝑓 ∈ 𝒫 ( 𝐵 ∖ 𝐶 ) ) ) |
| 14 | 13 | ssrdv | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) |
| 15 | 2 14 | syl | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) |
| 16 | simplrr | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → 𝐶 ∈ 𝐴 ) | |
| 17 | difid | ⊢ ( 𝐶 ∖ 𝐶 ) = ∅ | |
| 18 | 17 | eqcomi | ⊢ ∅ = ( 𝐶 ∖ 𝐶 ) |
| 19 | difeq1 | ⊢ ( 𝑔 = 𝐶 → ( 𝑔 ∖ 𝐶 ) = ( 𝐶 ∖ 𝐶 ) ) | |
| 20 | 19 | rspceeqv | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∅ = ( 𝐶 ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
| 21 | 18 20 | mpan2 | ⊢ ( 𝐶 ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
| 22 | 0ex | ⊢ ∅ ∈ V | |
| 23 | 9 | elrnmpt | ⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) ) |
| 24 | 22 23 | ax-mp | ⊢ ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ∅ = ( 𝑔 ∖ 𝐶 ) ) |
| 25 | 21 24 | sylibr | ⊢ ( 𝐶 ∈ 𝐴 → ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 26 | ne0i | ⊢ ( ∅ ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ) | |
| 27 | 16 25 26 | 3syl | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ) |
| 28 | simpll2 | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → [⊊] Or 𝐴 ) | |
| 29 | 9 | elrnmpt | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ) ) |
| 30 | 29 | elv | ⊢ ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ) |
| 31 | difeq1 | ⊢ ( 𝑔 = 𝑒 → ( 𝑔 ∖ 𝐶 ) = ( 𝑒 ∖ 𝐶 ) ) | |
| 32 | 31 | eqeq2d | ⊢ ( 𝑔 = 𝑒 → ( 𝑥 = ( 𝑔 ∖ 𝐶 ) ↔ 𝑥 = ( 𝑒 ∖ 𝐶 ) ) ) |
| 33 | 32 | cbvrexvw | ⊢ ( ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) ↔ ∃ 𝑒 ∈ 𝐴 𝑥 = ( 𝑒 ∖ 𝐶 ) ) |
| 34 | sorpssi | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( 𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒 ) ) | |
| 35 | ssdif | ⊢ ( 𝑒 ⊆ 𝑔 → ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ) | |
| 36 | ssdif | ⊢ ( 𝑔 ⊆ 𝑒 → ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) | |
| 37 | 35 36 | orim12i | ⊢ ( ( 𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
| 38 | 34 37 | syl | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
| 39 | sseq2 | ⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ↔ ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ) ) | |
| 40 | sseq1 | ⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ↔ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) | |
| 41 | 39 40 | orbi12d | ⊢ ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ↔ ( ( 𝑒 ∖ 𝐶 ) ⊆ ( 𝑔 ∖ 𝐶 ) ∨ ( 𝑔 ∖ 𝐶 ) ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 42 | 38 41 | syl5ibrcom | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) ) → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 43 | 42 | expr | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐴 → ( 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) ) |
| 44 | 43 | rexlimdv | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( ∃ 𝑔 ∈ 𝐴 𝑓 = ( 𝑔 ∖ 𝐶 ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 45 | 11 44 | biimtrid | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 46 | 45 | ralrimiv | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) |
| 47 | sseq1 | ⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( 𝑥 ⊆ 𝑓 ↔ ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ) ) | |
| 48 | sseq2 | ⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( 𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) | |
| 49 | 47 48 | orbi12d | ⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ↔ ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 50 | 49 | ralbidv | ⊢ ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ( ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ↔ ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( ( 𝑒 ∖ 𝐶 ) ⊆ 𝑓 ∨ 𝑓 ⊆ ( 𝑒 ∖ 𝐶 ) ) ) ) |
| 51 | 46 50 | syl5ibrcom | ⊢ ( ( [⊊] Or 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( 𝑥 = ( 𝑒 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
| 52 | 51 | rexlimdva | ⊢ ( [⊊] Or 𝐴 → ( ∃ 𝑒 ∈ 𝐴 𝑥 = ( 𝑒 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
| 53 | 33 52 | biimtrid | ⊢ ( [⊊] Or 𝐴 → ( ∃ 𝑔 ∈ 𝐴 𝑥 = ( 𝑔 ∖ 𝐶 ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
| 54 | 30 53 | biimtrid | ⊢ ( [⊊] Or 𝐴 → ( 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) ) |
| 55 | 54 | ralrimiv | ⊢ ( [⊊] Or 𝐴 → ∀ 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) |
| 56 | sorpss | ⊢ ( [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∀ 𝑓 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ( 𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥 ) ) | |
| 57 | 55 56 | sylibr | ⊢ ( [⊊] Or 𝐴 → [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 58 | 28 57 | syl | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 59 | fin2i | ⊢ ( ( ( ( 𝐵 ∖ 𝐶 ) ∈ FinII ∧ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ⊆ 𝒫 ( 𝐵 ∖ 𝐶 ) ) ∧ ( ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ≠ ∅ ∧ [⊊] Or ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) | |
| 60 | 1 15 27 58 59 | syl22anc | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 61 | simpll3 | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ¬ ∪ 𝐴 ∈ 𝐴 ) | |
| 62 | difeq1 | ⊢ ( 𝑔 = 𝑓 → ( 𝑔 ∖ 𝐶 ) = ( 𝑓 ∖ 𝐶 ) ) | |
| 63 | 62 | cbvmptv | ⊢ ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∈ 𝐴 ↦ ( 𝑓 ∖ 𝐶 ) ) |
| 64 | 63 | elrnmpt | ⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) |
| 65 | 64 | ibi | ⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) |
| 66 | eqid | ⊢ ( ℎ ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) | |
| 67 | difeq1 | ⊢ ( 𝑔 = ℎ → ( 𝑔 ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) ) | |
| 68 | 67 | rspceeqv | ⊢ ( ( ℎ ∈ 𝐴 ∧ ( ℎ ∖ 𝐶 ) = ( ℎ ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 69 | 66 68 | mpan2 | ⊢ ( ℎ ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 70 | 69 | adantl | ⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 71 | vex | ⊢ ℎ ∈ V | |
| 72 | difexg | ⊢ ( ℎ ∈ V → ( ℎ ∖ 𝐶 ) ∈ V ) | |
| 73 | 9 | elrnmpt | ⊢ ( ( ℎ ∖ 𝐶 ) ∈ V → ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) ) |
| 74 | 71 72 73 | mp2b | ⊢ ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( ℎ ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 75 | 70 74 | sylibr | ⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 76 | elssuni | ⊢ ( ( ℎ ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ( ℎ ∖ 𝐶 ) ⊆ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) | |
| 77 | 75 76 | syl | ⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 78 | simplr | ⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) | |
| 79 | 77 78 | sseqtrd | ⊢ ( ( ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) ) |
| 80 | 79 | adantll | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) ) |
| 81 | unss2 | ⊢ ( ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) → ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) ) | |
| 82 | uncom | ⊢ ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ( ℎ ∖ 𝐶 ) ∪ 𝐶 ) | |
| 83 | undif1 | ⊢ ( ( ℎ ∖ 𝐶 ) ∪ 𝐶 ) = ( ℎ ∪ 𝐶 ) | |
| 84 | 82 83 | eqtri | ⊢ ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ℎ ∪ 𝐶 ) |
| 85 | 84 | a1i | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) = ( ℎ ∪ 𝐶 ) ) |
| 86 | 61 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ¬ ∪ 𝐴 ∈ 𝐴 ) |
| 87 | 16 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) |
| 88 | simplrr | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) | |
| 89 | eqeq1 | ⊢ ( 𝑒 = ( 𝑥 ∖ 𝐶 ) → ( 𝑒 = ∅ ↔ ( 𝑥 ∖ 𝐶 ) = ∅ ) ) | |
| 90 | simpllr | ⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) | |
| 91 | ssdif0 | ⊢ ( 𝑓 ⊆ 𝐶 ↔ ( 𝑓 ∖ 𝐶 ) = ∅ ) | |
| 92 | 91 | biimpi | ⊢ ( 𝑓 ⊆ 𝐶 → ( 𝑓 ∖ 𝐶 ) = ∅ ) |
| 93 | 92 | ad2antlr | ⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ∖ 𝐶 ) = ∅ ) |
| 94 | 90 93 | eqtrd | ⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ∅ ) |
| 95 | uni0c | ⊢ ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ∅ ↔ ∀ 𝑒 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) 𝑒 = ∅ ) | |
| 96 | 94 95 | sylib | ⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑒 ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) 𝑒 = ∅ ) |
| 97 | eqid | ⊢ ( 𝑥 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) | |
| 98 | difeq1 | ⊢ ( 𝑔 = 𝑥 → ( 𝑔 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) ) | |
| 99 | 98 | rspceeqv | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∖ 𝐶 ) = ( 𝑥 ∖ 𝐶 ) ) → ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 100 | 97 99 | mpan2 | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 101 | vex | ⊢ 𝑥 ∈ V | |
| 102 | difexg | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∖ 𝐶 ) ∈ V ) | |
| 103 | 9 | elrnmpt | ⊢ ( ( 𝑥 ∖ 𝐶 ) ∈ V → ( ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) ) |
| 104 | 101 102 103 | mp2b | ⊢ ( ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ↔ ∃ 𝑔 ∈ 𝐴 ( 𝑥 ∖ 𝐶 ) = ( 𝑔 ∖ 𝐶 ) ) |
| 105 | 100 104 | sylibr | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 106 | 105 | adantl | ⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∖ 𝐶 ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 107 | 89 96 106 | rspcdva | ⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∖ 𝐶 ) = ∅ ) |
| 108 | ssdif0 | ⊢ ( 𝑥 ⊆ 𝐶 ↔ ( 𝑥 ∖ 𝐶 ) = ∅ ) | |
| 109 | 107 108 | sylibr | ⊢ ( ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ 𝐶 ) |
| 110 | 109 | ralrimiva | ⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶 ) |
| 111 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶 ) | |
| 112 | 110 111 | sylibr | ⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 ⊆ 𝐶 ) |
| 113 | elssuni | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝐴 ) | |
| 114 | 113 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → 𝐶 ⊆ ∪ 𝐴 ) |
| 115 | 112 114 | eqssd | ⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 = 𝐶 ) |
| 116 | simpll | ⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → 𝐶 ∈ 𝐴 ) | |
| 117 | 115 116 | eqeltrd | ⊢ ( ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ∧ 𝑓 ⊆ 𝐶 ) → ∪ 𝐴 ∈ 𝐴 ) |
| 118 | 117 | ex | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) → ( 𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴 ) ) |
| 119 | 87 88 118 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴 ) ) |
| 120 | 86 119 | mtod | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ¬ 𝑓 ⊆ 𝐶 ) |
| 121 | 28 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → [⊊] Or 𝐴 ) |
| 122 | simplrl | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝑓 ∈ 𝐴 ) | |
| 123 | sorpssi | ⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑓 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) ) | |
| 124 | 121 122 87 123 | syl12anc | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) ) |
| 125 | orel1 | ⊢ ( ¬ 𝑓 ⊆ 𝐶 → ( ( 𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓 ) → 𝐶 ⊆ 𝑓 ) ) | |
| 126 | 120 124 125 | sylc | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → 𝐶 ⊆ 𝑓 ) |
| 127 | undif | ⊢ ( 𝐶 ⊆ 𝑓 ↔ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) = 𝑓 ) | |
| 128 | 126 127 | sylib | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) = 𝑓 ) |
| 129 | 85 128 | sseq12d | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) ↔ ( ℎ ∪ 𝐶 ) ⊆ 𝑓 ) ) |
| 130 | ssun1 | ⊢ ℎ ⊆ ( ℎ ∪ 𝐶 ) | |
| 131 | sstr | ⊢ ( ( ℎ ⊆ ( ℎ ∪ 𝐶 ) ∧ ( ℎ ∪ 𝐶 ) ⊆ 𝑓 ) → ℎ ⊆ 𝑓 ) | |
| 132 | 130 131 | mpan | ⊢ ( ( ℎ ∪ 𝐶 ) ⊆ 𝑓 → ℎ ⊆ 𝑓 ) |
| 133 | 129 132 | biimtrdi | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( 𝐶 ∪ ( ℎ ∖ 𝐶 ) ) ⊆ ( 𝐶 ∪ ( 𝑓 ∖ 𝐶 ) ) → ℎ ⊆ 𝑓 ) ) |
| 134 | 81 133 | syl5 | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ( ( ℎ ∖ 𝐶 ) ⊆ ( 𝑓 ∖ 𝐶 ) → ℎ ⊆ 𝑓 ) ) |
| 135 | 80 134 | mpd | ⊢ ( ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) ∧ ℎ ∈ 𝐴 ) → ℎ ⊆ 𝑓 ) |
| 136 | 135 | ralrimiva | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∀ ℎ ∈ 𝐴 ℎ ⊆ 𝑓 ) |
| 137 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝑓 ↔ ∀ ℎ ∈ 𝐴 ℎ ⊆ 𝑓 ) | |
| 138 | 136 137 | sylibr | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 ⊆ 𝑓 ) |
| 139 | elssuni | ⊢ ( 𝑓 ∈ 𝐴 → 𝑓 ⊆ ∪ 𝐴 ) | |
| 140 | 139 | ad2antrl | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → 𝑓 ⊆ ∪ 𝐴 ) |
| 141 | 138 140 | eqssd | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 = 𝑓 ) |
| 142 | simprl | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → 𝑓 ∈ 𝐴 ) | |
| 143 | 141 142 | eqeltrd | ⊢ ( ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) ∧ ( 𝑓 ∈ 𝐴 ∧ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) ) ) → ∪ 𝐴 ∈ 𝐴 ) |
| 144 | 143 | rexlimdvaa | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( ∃ 𝑓 ∈ 𝐴 ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) = ( 𝑓 ∖ 𝐶 ) → ∪ 𝐴 ∈ 𝐴 ) ) |
| 145 | 65 144 | syl5 | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ( ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) → ∪ 𝐴 ∈ 𝐴 ) ) |
| 146 | 61 145 | mtod | ⊢ ( ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) ∧ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) → ¬ ∪ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ∈ ran ( 𝑔 ∈ 𝐴 ↦ ( 𝑔 ∖ 𝐶 ) ) ) |
| 147 | 60 146 | pm2.65da | ⊢ ( ( ( 𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴 ) ∧ ( ¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 ∖ 𝐶 ) ∈ FinII ) |