This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elintab.ex | ⊢ 𝐴 ∈ V | |
| Assertion | elintrab | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintab.ex | ⊢ 𝐴 ∈ V | |
| 2 | 1 | elintab | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ∈ 𝑥 ) ) |
| 3 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) → 𝐴 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 5 | 2 4 | bitri | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
| 6 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 7 | 6 | inteqi | ⊢ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } |
| 8 | 7 | eleq2i | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ 𝐴 ∈ ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 9 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) | |
| 10 | 5 8 9 | 3bitr4i | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) |