This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fixufil and uffixfr . (Contributed by Mario Carneiro, 12-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffix | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | ⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ⊆ 𝑋 ) | |
| 2 | snnzg | ⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ≠ ∅ ) | |
| 3 | simpl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → 𝑋 ∈ 𝑉 ) | |
| 4 | snfbas | ⊢ ( ( { 𝐴 } ⊆ 𝑋 ∧ { 𝐴 } ≠ ∅ ∧ 𝑋 ∈ 𝑉 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ) | |
| 5 | 1 2 3 4 | syl2an23an | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ) |
| 6 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) | |
| 7 | 6 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) ) |
| 8 | snex | ⊢ { 𝐴 } ∈ V | |
| 9 | 8 | snid | ⊢ { 𝐴 } ∈ { { 𝐴 } } |
| 10 | snssi | ⊢ ( 𝐴 ∈ 𝑦 → { 𝐴 } ⊆ 𝑦 ) | |
| 11 | sseq1 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝑥 ⊆ 𝑦 ↔ { 𝐴 } ⊆ 𝑦 ) ) | |
| 12 | 11 | rspcev | ⊢ ( ( { 𝐴 } ∈ { { 𝐴 } } ∧ { 𝐴 } ⊆ 𝑦 ) → ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) |
| 13 | 9 10 12 | sylancr | ⊢ ( 𝐴 ∈ 𝑦 → ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) |
| 14 | intss1 | ⊢ ( 𝑥 ∈ { { 𝐴 } } → ∩ { { 𝐴 } } ⊆ 𝑥 ) | |
| 15 | sstr2 | ⊢ ( ∩ { { 𝐴 } } ⊆ 𝑥 → ( 𝑥 ⊆ 𝑦 → ∩ { { 𝐴 } } ⊆ 𝑦 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑥 ∈ { { 𝐴 } } → ( 𝑥 ⊆ 𝑦 → ∩ { { 𝐴 } } ⊆ 𝑦 ) ) |
| 17 | snidg | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 } ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ { 𝐴 } ) |
| 19 | 8 | intsn | ⊢ ∩ { { 𝐴 } } = { 𝐴 } |
| 20 | 18 19 | eleqtrrdi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ∩ { { 𝐴 } } ) |
| 21 | ssel | ⊢ ( ∩ { { 𝐴 } } ⊆ 𝑦 → ( 𝐴 ∈ ∩ { { 𝐴 } } → 𝐴 ∈ 𝑦 ) ) | |
| 22 | 20 21 | syl5com | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( ∩ { { 𝐴 } } ⊆ 𝑦 → 𝐴 ∈ 𝑦 ) ) |
| 23 | 16 22 | sylan9r | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ { { 𝐴 } } ) → ( 𝑥 ⊆ 𝑦 → 𝐴 ∈ 𝑦 ) ) |
| 24 | 23 | rexlimdva | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 → 𝐴 ∈ 𝑦 ) ) |
| 25 | 13 24 | impbid2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑦 ↔ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) ) |
| 26 | 7 25 | anbi12d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) ) ) |
| 27 | eleq2w | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 28 | 27 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) |
| 29 | 28 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝐴 ∈ 𝑦 ) ) ) |
| 30 | elfg | ⊢ ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) → ( 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) ) ) | |
| 31 | 5 30 | syl | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ { { 𝐴 } } 𝑥 ⊆ 𝑦 ) ) ) |
| 32 | 26 29 31 | 3bitr4d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } ↔ 𝑦 ∈ ( 𝑋 filGen { { 𝐴 } } ) ) ) |
| 33 | 32 | eqrdv | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) |
| 34 | 5 33 | jca | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( { { 𝐴 } } ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥 } = ( 𝑋 filGen { { 𝐴 } } ) ) ) |