This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bndth.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| bndth.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| bndth.3 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| bndth.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| evth.5 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | ||
| Assertion | evth2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bndth.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | bndth.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 3 | bndth.3 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 4 | bndth.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 5 | evth.5 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | |
| 6 | cmptop | ⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 8 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 11 | 2 | unieqi | ⊢ ∪ 𝐾 = ∪ ( topGen ‘ ran (,) ) |
| 12 | 10 11 | eqtr4i | ⊢ ℝ = ∪ 𝐾 |
| 13 | 1 12 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 15 | 14 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 16 | 15 4 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 17 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 18 | 2 17 | eqeltri | ⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
| 19 | 18 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℝ ) ) |
| 20 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 21 | 20 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 23 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 24 | 19 22 23 | cnmptc | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ 0 ) ∈ ( 𝐾 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 25 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 26 | 2 25 | eqtri | ⊢ 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 27 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 28 | 27 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 29 | 22 | cnmptid | ⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ 𝑦 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 30 | 26 22 28 29 | cnmpt1res | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( 𝐾 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 31 | 20 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 32 | 31 | a1i | ⊢ ( 𝜑 → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 33 | 19 24 30 32 | cnmpt12f | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ∈ ( 𝐾 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 34 | df-neg | ⊢ - 𝑦 = ( 0 − 𝑦 ) | |
| 35 | renegcl | ⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) | |
| 36 | 34 35 | eqeltrrid | ⊢ ( 𝑦 ∈ ℝ → ( 0 − 𝑦 ) ∈ ℝ ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 0 − 𝑦 ) ∈ ℝ ) |
| 38 | 37 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) : ℝ ⟶ ℝ ) |
| 39 | 38 | frnd | ⊢ ( 𝜑 → ran ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ⊆ ℝ ) |
| 40 | cnrest2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ∈ ( 𝐾 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ∈ ( 𝐾 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) | |
| 41 | 22 39 28 40 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ∈ ( 𝐾 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ∈ ( 𝐾 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
| 42 | 33 41 | mpbid | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ∈ ( 𝐾 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 43 | 26 | oveq2i | ⊢ ( 𝐾 Cn 𝐾 ) = ( 𝐾 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 44 | 42 43 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( 0 − 𝑦 ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 45 | negeq | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → - 𝑦 = - ( 𝐹 ‘ 𝑧 ) ) | |
| 46 | 34 45 | eqtr3id | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ( 0 − 𝑦 ) = - ( 𝐹 ‘ 𝑧 ) ) |
| 47 | 9 16 19 44 46 | cnmpt11 | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 48 | 1 2 3 47 5 | evth | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 ) ≤ ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ) |
| 49 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 50 | 49 | negeqd | ⊢ ( 𝑧 = 𝑦 → - ( 𝐹 ‘ 𝑧 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 51 | eqid | ⊢ ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) | |
| 52 | negex | ⊢ - ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 53 | 50 51 52 | fvmpt | ⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 54 | 53 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 55 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 56 | 55 | negeqd | ⊢ ( 𝑧 = 𝑥 → - ( 𝐹 ‘ 𝑧 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 57 | negex | ⊢ - ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 58 | 56 51 57 | fvmpt | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 59 | 58 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) = - ( 𝐹 ‘ 𝑥 ) ) |
| 60 | 54 59 | breq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 ) ≤ ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ↔ - ( 𝐹 ‘ 𝑦 ) ≤ - ( 𝐹 ‘ 𝑥 ) ) ) |
| 61 | 14 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 62 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 63 | 14 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 64 | 63 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 65 | 62 64 | lenegd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ - ( 𝐹 ‘ 𝑦 ) ≤ - ( 𝐹 ‘ 𝑥 ) ) ) |
| 66 | 60 65 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 ) ≤ ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 67 | 66 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 ) ≤ ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 68 | 67 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑦 ) ≤ ( ( 𝑧 ∈ 𝑋 ↦ - ( 𝐹 ‘ 𝑧 ) ) ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 69 | 48 68 | mpbid | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |