This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bndth.1 | |- X = U. J |
|
| bndth.2 | |- K = ( topGen ` ran (,) ) |
||
| bndth.3 | |- ( ph -> J e. Comp ) |
||
| bndth.4 | |- ( ph -> F e. ( J Cn K ) ) |
||
| evth.5 | |- ( ph -> X =/= (/) ) |
||
| Assertion | evth | |- ( ph -> E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bndth.1 | |- X = U. J |
|
| 2 | bndth.2 | |- K = ( topGen ` ran (,) ) |
|
| 3 | bndth.3 | |- ( ph -> J e. Comp ) |
|
| 4 | bndth.4 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 5 | evth.5 | |- ( ph -> X =/= (/) ) |
|
| 6 | 3 | adantr | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. Comp ) |
| 7 | cmptop | |- ( J e. Comp -> J e. Top ) |
|
| 8 | 6 7 | syl | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. Top ) |
| 9 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 10 | 8 9 | sylib | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> J e. ( TopOn ` X ) ) |
| 11 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 12 | 11 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 13 | 12 | a1i | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 14 | 1cnd | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> 1 e. CC ) |
|
| 15 | 10 13 14 | cnmptc | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> 1 ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 16 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 17 | 2 | unieqi | |- U. K = U. ( topGen ` ran (,) ) |
| 18 | 16 17 | eqtr4i | |- RR = U. K |
| 19 | 1 18 | cnf | |- ( F e. ( J Cn K ) -> F : X --> RR ) |
| 20 | 4 19 | syl | |- ( ph -> F : X --> RR ) |
| 21 | 20 | frnd | |- ( ph -> ran F C_ RR ) |
| 22 | 20 | fdmd | |- ( ph -> dom F = X ) |
| 23 | 22 5 | eqnetrd | |- ( ph -> dom F =/= (/) ) |
| 24 | dm0rn0 | |- ( dom F = (/) <-> ran F = (/) ) |
|
| 25 | 24 | necon3bii | |- ( dom F =/= (/) <-> ran F =/= (/) ) |
| 26 | 23 25 | sylib | |- ( ph -> ran F =/= (/) ) |
| 27 | 1 2 3 4 | bndth | |- ( ph -> E. x e. RR A. y e. X ( F ` y ) <_ x ) |
| 28 | 20 | ffnd | |- ( ph -> F Fn X ) |
| 29 | breq1 | |- ( z = ( F ` y ) -> ( z <_ x <-> ( F ` y ) <_ x ) ) |
|
| 30 | 29 | ralrn | |- ( F Fn X -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) |
| 31 | 28 30 | syl | |- ( ph -> ( A. z e. ran F z <_ x <-> A. y e. X ( F ` y ) <_ x ) ) |
| 32 | 31 | rexbidv | |- ( ph -> ( E. x e. RR A. z e. ran F z <_ x <-> E. x e. RR A. y e. X ( F ` y ) <_ x ) ) |
| 33 | 27 32 | mpbird | |- ( ph -> E. x e. RR A. z e. ran F z <_ x ) |
| 34 | 21 26 33 | 3jca | |- ( ph -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) ) |
| 35 | suprcl | |- ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) -> sup ( ran F , RR , < ) e. RR ) |
|
| 36 | 34 35 | syl | |- ( ph -> sup ( ran F , RR , < ) e. RR ) |
| 37 | 36 | recnd | |- ( ph -> sup ( ran F , RR , < ) e. CC ) |
| 38 | 37 | adantr | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> sup ( ran F , RR , < ) e. CC ) |
| 39 | 10 13 38 | cnmptc | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> sup ( ran F , RR , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 40 | 20 | feqmptd | |- ( ph -> F = ( z e. X |-> ( F ` z ) ) ) |
| 41 | 11 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 42 | cnrest2r | |- ( ( TopOpen ` CCfld ) e. Top -> ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( J Cn ( TopOpen ` CCfld ) ) ) |
|
| 43 | 41 42 | ax-mp | |- ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( J Cn ( TopOpen ` CCfld ) ) |
| 44 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 45 | 2 44 | eqtri | |- K = ( ( TopOpen ` CCfld ) |`t RR ) |
| 46 | 45 | oveq2i | |- ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 47 | 4 46 | eleqtrdi | |- ( ph -> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 48 | 43 47 | sselid | |- ( ph -> F e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 49 | 40 48 | eqeltrrd | |- ( ph -> ( z e. X |-> ( F ` z ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 50 | 49 | adantr | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( F ` z ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 51 | 11 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 52 | 51 | a1i | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 53 | 10 39 50 52 | cnmpt12f | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 54 | 36 | ad2antrr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) e. RR ) |
| 55 | ffvelcdm | |- ( ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) /\ z e. X ) -> ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) |
|
| 56 | 55 | adantll | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) |
| 57 | eldifsn | |- ( ( F ` z ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) =/= sup ( ran F , RR , < ) ) ) |
|
| 58 | 56 57 | sylib | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( ( F ` z ) e. RR /\ ( F ` z ) =/= sup ( ran F , RR , < ) ) ) |
| 59 | 58 | simpld | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. RR ) |
| 60 | 54 59 | resubcld | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. RR ) |
| 61 | 60 | recnd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. CC ) |
| 62 | 54 | recnd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) e. CC ) |
| 63 | 59 | recnd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) e. CC ) |
| 64 | 58 | simprd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( F ` z ) =/= sup ( ran F , RR , < ) ) |
| 65 | 64 | necomd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> sup ( ran F , RR , < ) =/= ( F ` z ) ) |
| 66 | 62 63 65 | subne0d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) =/= 0 ) |
| 67 | eldifsn | |- ( ( sup ( ran F , RR , < ) - ( F ` z ) ) e. ( CC \ { 0 } ) <-> ( ( sup ( ran F , RR , < ) - ( F ` z ) ) e. CC /\ ( sup ( ran F , RR , < ) - ( F ` z ) ) =/= 0 ) ) |
|
| 68 | 61 66 67 | sylanbrc | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( sup ( ran F , RR , < ) - ( F ` z ) ) e. ( CC \ { 0 } ) ) |
| 69 | 68 | fmpttd | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) : X --> ( CC \ { 0 } ) ) |
| 70 | 69 | frnd | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ran ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) C_ ( CC \ { 0 } ) ) |
| 71 | difssd | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( CC \ { 0 } ) C_ CC ) |
|
| 72 | cnrest2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) C_ ( CC \ { 0 } ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) ) |
|
| 73 | 13 70 71 72 | syl3anc | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) ) |
| 74 | 53 73 | mpbid | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) |
| 75 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) |
|
| 76 | 11 75 | divcn | |- / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) |
| 77 | 76 | a1i | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 78 | 10 15 74 77 | cnmpt12f | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 79 | 60 66 | rereccld | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ z e. X ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) e. RR ) |
| 80 | 79 | fmpttd | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) : X --> RR ) |
| 81 | 80 | frnd | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ran ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) C_ RR ) |
| 82 | ax-resscn | |- RR C_ CC |
|
| 83 | 82 | a1i | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> RR C_ CC ) |
| 84 | cnrest2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) C_ RR /\ RR C_ CC ) -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
|
| 85 | 13 81 83 84 | syl3anc | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 86 | 78 85 | mpbid | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 87 | 86 46 | eleqtrrdi | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) e. ( J Cn K ) ) |
| 88 | 1 2 6 87 | bndth | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> E. x e. RR A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) |
| 89 | 36 | ad2antrr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> sup ( ran F , RR , < ) e. RR ) |
| 90 | simpr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> x e. RR ) |
|
| 91 | 1re | |- 1 e. RR |
|
| 92 | ifcl | |- ( ( x e. RR /\ 1 e. RR ) -> if ( 1 <_ x , x , 1 ) e. RR ) |
|
| 93 | 90 91 92 | sylancl | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> if ( 1 <_ x , x , 1 ) e. RR ) |
| 94 | 0red | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 e. RR ) |
|
| 95 | 91 | a1i | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 1 e. RR ) |
| 96 | 0lt1 | |- 0 < 1 |
|
| 97 | 96 | a1i | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < 1 ) |
| 98 | max1 | |- ( ( 1 e. RR /\ x e. RR ) -> 1 <_ if ( 1 <_ x , x , 1 ) ) |
|
| 99 | 91 90 98 | sylancr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 1 <_ if ( 1 <_ x , x , 1 ) ) |
| 100 | 94 95 93 97 99 | ltletrd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < if ( 1 <_ x , x , 1 ) ) |
| 101 | 100 | gt0ne0d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> if ( 1 <_ x , x , 1 ) =/= 0 ) |
| 102 | 93 101 | rereccld | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR ) |
| 103 | 93 100 | recgt0d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) |
| 104 | 102 103 | elrpd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR+ ) |
| 105 | 89 104 | ltsubrpd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) < sup ( ran F , RR , < ) ) |
| 106 | 89 102 | resubcld | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) e. RR ) |
| 107 | 106 89 | ltnled | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) < sup ( ran F , RR , < ) <-> -. sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 108 | 105 107 | mpbid | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> -. sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) |
| 109 | simprl | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> x e. RR ) |
|
| 110 | max2 | |- ( ( 1 e. RR /\ x e. RR ) -> x <_ if ( 1 <_ x , x , 1 ) ) |
|
| 111 | 91 109 110 | sylancr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> x <_ if ( 1 <_ x , x , 1 ) ) |
| 112 | 36 | ad2antrr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> sup ( ran F , RR , < ) e. RR ) |
| 113 | ffvelcdm | |- ( ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) /\ y e. X ) -> ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) |
|
| 114 | 113 | ad2ant2l | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) |
| 115 | eldifsn | |- ( ( F ` y ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` y ) e. RR /\ ( F ` y ) =/= sup ( ran F , RR , < ) ) ) |
|
| 116 | 114 115 | sylib | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) e. RR /\ ( F ` y ) =/= sup ( ran F , RR , < ) ) ) |
| 117 | 116 | simpld | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) e. RR ) |
| 118 | 112 117 | resubcld | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( sup ( ran F , RR , < ) - ( F ` y ) ) e. RR ) |
| 119 | fnfvelrn | |- ( ( F Fn X /\ y e. X ) -> ( F ` y ) e. ran F ) |
|
| 120 | 28 119 | sylan | |- ( ( ph /\ y e. X ) -> ( F ` y ) e. ran F ) |
| 121 | suprub | |- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) /\ ( F ` y ) e. ran F ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) |
|
| 122 | 34 120 121 | syl2an2r | |- ( ( ph /\ y e. X ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) |
| 123 | 122 | ad2ant2rl | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) <_ sup ( ran F , RR , < ) ) |
| 124 | 116 | simprd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) =/= sup ( ran F , RR , < ) ) |
| 125 | 124 | necomd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> sup ( ran F , RR , < ) =/= ( F ` y ) ) |
| 126 | 117 112 123 125 | leneltd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( F ` y ) < sup ( ran F , RR , < ) ) |
| 127 | 117 112 | posdifd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) < sup ( ran F , RR , < ) <-> 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) |
| 128 | 126 127 | mpbid | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) |
| 129 | 128 | gt0ne0d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( sup ( ran F , RR , < ) - ( F ` y ) ) =/= 0 ) |
| 130 | 118 129 | rereccld | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. RR ) |
| 131 | 109 91 92 | sylancl | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) e. RR ) |
| 132 | letr | |- ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. RR /\ x e. RR /\ if ( 1 <_ x , x , 1 ) e. RR ) -> ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x /\ x <_ if ( 1 <_ x , x , 1 ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
|
| 133 | 130 109 131 132 | syl3anc | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x /\ x <_ if ( 1 <_ x , x , 1 ) ) -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 134 | 111 133 | mpan2d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 135 | fveq2 | |- ( z = y -> ( F ` z ) = ( F ` y ) ) |
|
| 136 | 135 | oveq2d | |- ( z = y -> ( sup ( ran F , RR , < ) - ( F ` z ) ) = ( sup ( ran F , RR , < ) - ( F ` y ) ) ) |
| 137 | 136 | oveq2d | |- ( z = y -> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) = ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) |
| 138 | eqid | |- ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) = ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) |
|
| 139 | ovex | |- ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) e. _V |
|
| 140 | 137 138 139 | fvmpt | |- ( y e. X -> ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) = ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) |
| 141 | 140 | breq1d | |- ( y e. X -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x ) ) |
| 142 | 141 | ad2antll | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ x ) ) |
| 143 | 102 | adantrr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR ) |
| 144 | 100 | adantrr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < if ( 1 <_ x , x , 1 ) ) |
| 145 | 131 144 | recgt0d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) |
| 146 | lerec | |- ( ( ( ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR /\ 0 < ( 1 / if ( 1 <_ x , x , 1 ) ) ) /\ ( ( sup ( ran F , RR , < ) - ( F ` y ) ) e. RR /\ 0 < ( sup ( ran F , RR , < ) - ( F ` y ) ) ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
|
| 147 | 143 145 118 128 146 | syl22anc | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 148 | lesub | |- ( ( ( 1 / if ( 1 <_ x , x , 1 ) ) e. RR /\ sup ( ran F , RR , < ) e. RR /\ ( F ` y ) e. RR ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
|
| 149 | 143 112 117 148 | syl3anc | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / if ( 1 <_ x , x , 1 ) ) <_ ( sup ( ran F , RR , < ) - ( F ` y ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 150 | 131 | recnd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) e. CC ) |
| 151 | 101 | adantrr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> if ( 1 <_ x , x , 1 ) =/= 0 ) |
| 152 | 150 151 | recrecd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) = if ( 1 <_ x , x , 1 ) ) |
| 153 | 152 | breq2d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ ( 1 / ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 154 | 147 149 153 | 3bitr3d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` y ) ) ) <_ if ( 1 <_ x , x , 1 ) ) ) |
| 155 | 134 142 154 | 3imtr4d | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ ( x e. RR /\ y e. X ) ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 156 | 155 | anassrs | |- ( ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) /\ y e. X ) -> ( ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 157 | 156 | ralimdva | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 158 | 34 | ad2antrr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) ) |
| 159 | suprleub | |- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. z e. ran F z <_ x ) /\ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
|
| 160 | 158 106 159 | syl2anc | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 161 | 28 | ad2antrr | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> F Fn X ) |
| 162 | breq1 | |- ( z = ( F ` y ) -> ( z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
|
| 163 | 162 | ralrn | |- ( F Fn X -> ( A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 164 | 161 163 | syl | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. z e. ran F z <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 165 | 160 164 | bitrd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) <-> A. y e. X ( F ` y ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 166 | 157 165 | sylibrd | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> ( A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x -> sup ( ran F , RR , < ) <_ ( sup ( ran F , RR , < ) - ( 1 / if ( 1 <_ x , x , 1 ) ) ) ) ) |
| 167 | 108 166 | mtod | |- ( ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) /\ x e. RR ) -> -. A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) |
| 168 | 167 | nrexdv | |- ( ( ph /\ F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) -> -. E. x e. RR A. y e. X ( ( z e. X |-> ( 1 / ( sup ( ran F , RR , < ) - ( F ` z ) ) ) ) ` y ) <_ x ) |
| 169 | 88 168 | pm2.65da | |- ( ph -> -. F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) |
| 170 | 122 | ralrimiva | |- ( ph -> A. y e. X ( F ` y ) <_ sup ( ran F , RR , < ) ) |
| 171 | breq2 | |- ( ( F ` x ) = sup ( ran F , RR , < ) -> ( ( F ` y ) <_ ( F ` x ) <-> ( F ` y ) <_ sup ( ran F , RR , < ) ) ) |
|
| 172 | 171 | ralbidv | |- ( ( F ` x ) = sup ( ran F , RR , < ) -> ( A. y e. X ( F ` y ) <_ ( F ` x ) <-> A. y e. X ( F ` y ) <_ sup ( ran F , RR , < ) ) ) |
| 173 | 170 172 | syl5ibrcom | |- ( ph -> ( ( F ` x ) = sup ( ran F , RR , < ) -> A. y e. X ( F ` y ) <_ ( F ` x ) ) ) |
| 174 | 173 | necon3bd | |- ( ph -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 175 | 174 | adantr | |- ( ( ph /\ x e. X ) -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 176 | 20 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) |
| 177 | eldifsn | |- ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
|
| 178 | 177 | baib | |- ( ( F ` x ) e. RR -> ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 179 | 176 178 | syl | |- ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F ` x ) =/= sup ( ran F , RR , < ) ) ) |
| 180 | 175 179 | sylibrd | |- ( ( ph /\ x e. X ) -> ( -. A. y e. X ( F ` y ) <_ ( F ` x ) -> ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 181 | 180 | ralimdva | |- ( ph -> ( A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) -> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 182 | ffnfv | |- ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> ( F Fn X /\ A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
|
| 183 | 182 | baib | |- ( F Fn X -> ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 184 | 28 183 | syl | |- ( ph -> ( F : X --> ( RR \ { sup ( ran F , RR , < ) } ) <-> A. x e. X ( F ` x ) e. ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 185 | 181 184 | sylibrd | |- ( ph -> ( A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) -> F : X --> ( RR \ { sup ( ran F , RR , < ) } ) ) ) |
| 186 | 169 185 | mtod | |- ( ph -> -. A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) ) |
| 187 | dfrex2 | |- ( E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) <-> -. A. x e. X -. A. y e. X ( F ` y ) <_ ( F ` x ) ) |
|
| 188 | 186 187 | sylibr | |- ( ph -> E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) ) |