This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | renegcl.1 | ⊢ 𝐴 ∈ ℝ | |
| resubcl.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | resubcli | ⊢ ( 𝐴 − 𝐵 ) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | resubcl.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | 1 | recni | ⊢ 𝐴 ∈ ℂ |
| 4 | 2 | recni | ⊢ 𝐵 ∈ ℂ |
| 5 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) |
| 7 | 2 | renegcli | ⊢ - 𝐵 ∈ ℝ |
| 8 | 1 7 | readdcli | ⊢ ( 𝐴 + - 𝐵 ) ∈ ℝ |
| 9 | 6 8 | eqeltrri | ⊢ ( 𝐴 − 𝐵 ) ∈ ℝ |