This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure and bounds for the Euler-Mascheroni constant. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | emcl | ⊢ γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 2 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 3 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | |
| 4 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 1 / 𝑘 ) = ( 1 / 𝑛 ) ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 1 + ( 1 / 𝑘 ) ) = ( 1 + ( 1 / 𝑛 ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) |
| 7 | 4 6 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) = ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) |
| 8 | 7 | cbvmptv | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) |
| 9 | 1 2 3 8 | emcllem7 | ⊢ ( γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ∧ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) : ℕ ⟶ ( γ [,] 1 ) ∧ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) : ℕ ⟶ ( ( 1 − ( log ‘ 2 ) ) [,] γ ) ) |
| 10 | 9 | simp1i | ⊢ γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) |