This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . The series F and G are sequences of real numbers that approach gamma from above and below, respectively. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | ||
| Assertion | emcllem1 | ⊢ ( 𝐹 : ℕ ⟶ ℝ ∧ 𝐺 : ℕ ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 2 | emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 3 | fzfid | ⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 4 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℕ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℕ ) |
| 6 | 5 | nnrecred | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 7 | 3 6 | fsumrecl | ⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 8 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 9 | 8 | relogcld | ⊢ ( 𝑛 ∈ ℕ → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 10 | 7 9 | resubcld | ⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 11 | 1 10 | fmpti | ⊢ 𝐹 : ℕ ⟶ ℝ |
| 12 | peano2nn | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) | |
| 13 | 12 | nnrpd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
| 14 | 13 | relogcld | ⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 15 | 7 14 | resubcld | ⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 16 | 2 15 | fmpti | ⊢ 𝐺 : ℕ ⟶ ℝ |
| 17 | 11 16 | pm3.2i | ⊢ ( 𝐹 : ℕ ⟶ ℝ ∧ 𝐺 : ℕ ⟶ ℝ ) |