This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climub.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| climub.3 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climub.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| climub.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | ||
| Assertion | climub | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climub.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | climub.3 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 4 | climub.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 5 | climub.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 6 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 7 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 10 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) ) |
| 13 | 4 | expcom | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ) |
| 14 | 12 13 | vtoclga | ⊢ ( 𝑁 ∈ 𝑍 → ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
| 15 | 2 14 | mpcom | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 16 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ 𝑍 ) |
| 17 | 2 16 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ 𝑍 ) |
| 18 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 19 | 18 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
| 21 | 20 13 | vtoclga | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝜑 → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) |
| 22 | 21 | impcom | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 23 | 17 22 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 25 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 26 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 27 | 2 26 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 28 | 27 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 29 | 25 28 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 30 | 29 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 31 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑁 ... ( 𝑗 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 32 | 27 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 33 | 31 32 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑁 ... ( 𝑗 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... ( 𝑗 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 35 | 24 30 34 | monoord | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 36 | 6 9 15 3 23 35 | climlec2 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ 𝐴 ) |