This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . The difference between series F and G tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | ||
| emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | ||
| Assertion | emcllem4 | ⊢ 𝐻 ⇝ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 2 | emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 3 | emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | |
| 4 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 5 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | divcnv | ⊢ ( 1 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) | |
| 8 | 6 7 | mp1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) |
| 9 | nnex | ⊢ ℕ ∈ V | |
| 10 | 9 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ∈ V |
| 11 | 3 10 | eqeltri | ⊢ 𝐻 ∈ V |
| 12 | 11 | a1i | ⊢ ( ⊤ → 𝐻 ∈ V ) |
| 13 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) ) | |
| 14 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) | |
| 15 | ovex | ⊢ ( 1 / 𝑚 ) ∈ V | |
| 16 | 13 14 15 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑚 ) = ( 1 / 𝑚 ) ) |
| 17 | 16 | adantl | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑚 ) = ( 1 / 𝑚 ) ) |
| 18 | nnrecre | ⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℝ ) | |
| 19 | 18 | adantl | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 20 | 17 19 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 21 | 13 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑚 ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
| 23 | fvex | ⊢ ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ V | |
| 24 | 22 3 23 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( 𝐻 ‘ 𝑚 ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
| 26 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 27 | nnrp | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ ) | |
| 28 | 27 | adantl | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
| 29 | 28 | rpreccld | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 / 𝑚 ) ∈ ℝ+ ) |
| 30 | rpaddcl | ⊢ ( ( 1 ∈ ℝ+ ∧ ( 1 / 𝑚 ) ∈ ℝ+ ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ) | |
| 31 | 26 29 30 | sylancr | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ) |
| 32 | 31 | rpred | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ ) |
| 33 | 1re | ⊢ 1 ∈ ℝ | |
| 34 | ltaddrp | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝑚 ) ∈ ℝ+ ) → 1 < ( 1 + ( 1 / 𝑚 ) ) ) | |
| 35 | 33 29 34 | sylancr | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → 1 < ( 1 + ( 1 / 𝑚 ) ) ) |
| 36 | 32 35 | rplogcld | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ ℝ+ ) |
| 37 | 25 36 | eqeltrd | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ∈ ℝ+ ) |
| 38 | 37 | rpred | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ∈ ℝ ) |
| 39 | 31 | relogcld | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ ℝ ) |
| 40 | efgt1p | ⊢ ( ( 1 / 𝑚 ) ∈ ℝ+ → ( 1 + ( 1 / 𝑚 ) ) < ( exp ‘ ( 1 / 𝑚 ) ) ) | |
| 41 | 29 40 | syl | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 1 + ( 1 / 𝑚 ) ) < ( exp ‘ ( 1 / 𝑚 ) ) ) |
| 42 | 19 | rpefcld | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( exp ‘ ( 1 / 𝑚 ) ) ∈ ℝ+ ) |
| 43 | logltb | ⊢ ( ( ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ∧ ( exp ‘ ( 1 / 𝑚 ) ) ∈ ℝ+ ) → ( ( 1 + ( 1 / 𝑚 ) ) < ( exp ‘ ( 1 / 𝑚 ) ) ↔ ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) < ( log ‘ ( exp ‘ ( 1 / 𝑚 ) ) ) ) ) | |
| 44 | 31 42 43 | syl2anc | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( ( 1 + ( 1 / 𝑚 ) ) < ( exp ‘ ( 1 / 𝑚 ) ) ↔ ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) < ( log ‘ ( exp ‘ ( 1 / 𝑚 ) ) ) ) ) |
| 45 | 41 44 | mpbid | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) < ( log ‘ ( exp ‘ ( 1 / 𝑚 ) ) ) ) |
| 46 | 19 | relogefd | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( exp ‘ ( 1 / 𝑚 ) ) ) = ( 1 / 𝑚 ) ) |
| 47 | 45 46 | breqtrd | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) < ( 1 / 𝑚 ) ) |
| 48 | 39 19 47 | ltled | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ≤ ( 1 / 𝑚 ) ) |
| 49 | 48 25 17 | 3brtr4d | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑚 ) ) |
| 50 | 37 | rpge0d | ⊢ ( ( ⊤ ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( 𝐻 ‘ 𝑚 ) ) |
| 51 | 4 5 8 12 20 38 49 50 | climsqz2 | ⊢ ( ⊤ → 𝐻 ⇝ 0 ) |
| 52 | 51 | mptru | ⊢ 𝐻 ⇝ 0 |