This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . The partial sums of the series T , which is used in Definition df-em , is in fact the same as G . (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | ||
| emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | ||
| emcl.4 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) | ||
| Assertion | emcllem5 | ⊢ 𝐺 = seq 1 ( + , 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 2 | emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 3 | emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | |
| 4 | emcl.4 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) | |
| 5 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℕ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℕ ) |
| 7 | 6 | nncnd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℂ ) |
| 8 | 1cnd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 1 ∈ ℂ ) | |
| 9 | 6 | nnne0d | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ≠ 0 ) |
| 10 | 7 8 7 9 | divdird | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑚 / 𝑚 ) + ( 1 / 𝑚 ) ) ) |
| 11 | 7 9 | dividd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 𝑚 / 𝑚 ) = 1 ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 / 𝑚 ) + ( 1 / 𝑚 ) ) = ( 1 + ( 1 / 𝑚 ) ) ) |
| 13 | 10 12 | eqtrd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 + 1 ) / 𝑚 ) = ( 1 + ( 1 / 𝑚 ) ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
| 15 | peano2nn | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) | |
| 16 | 6 15 | syl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 17 | 16 | nnrpd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
| 18 | 6 | nnrpd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℝ+ ) |
| 19 | 17 18 | relogdivd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( ( log ‘ ( 𝑚 + 1 ) ) − ( log ‘ 𝑚 ) ) ) |
| 20 | 14 19 | eqtr3d | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) = ( ( log ‘ ( 𝑚 + 1 ) ) − ( log ‘ 𝑚 ) ) ) |
| 21 | 20 | sumeq2dv | ⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( 𝑚 + 1 ) ) − ( log ‘ 𝑚 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑥 = 𝑚 → ( log ‘ 𝑥 ) = ( log ‘ 𝑚 ) ) | |
| 23 | fveq2 | ⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝑚 + 1 ) ) ) | |
| 24 | fveq2 | ⊢ ( 𝑥 = 1 → ( log ‘ 𝑥 ) = ( log ‘ 1 ) ) | |
| 25 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝑛 + 1 ) ) ) | |
| 26 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 27 | peano2nn | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) | |
| 28 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 29 | 27 28 | eleqtrdi | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 30 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) → 𝑥 ∈ ℕ ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ∈ ℕ ) |
| 32 | 31 | nnrpd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 33 | 32 | relogcld | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 34 | 33 | recnd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 35 | 22 23 24 25 26 29 34 | telfsum2 | ⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( 𝑚 + 1 ) ) − ( log ‘ 𝑚 ) ) = ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 1 ) ) ) |
| 36 | log1 | ⊢ ( log ‘ 1 ) = 0 | |
| 37 | 36 | oveq2i | ⊢ ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 1 ) ) = ( ( log ‘ ( 𝑛 + 1 ) ) − 0 ) |
| 38 | 27 | nnrpd | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
| 39 | 38 | relogcld | ⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 40 | 39 | recnd | ⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 41 | 40 | subid1d | ⊢ ( 𝑛 ∈ ℕ → ( ( log ‘ ( 𝑛 + 1 ) ) − 0 ) = ( log ‘ ( 𝑛 + 1 ) ) ) |
| 42 | 37 41 | eqtrid | ⊢ ( 𝑛 ∈ ℕ → ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 1 ) ) = ( log ‘ ( 𝑛 + 1 ) ) ) |
| 43 | 21 35 42 | 3eqtrd | ⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) = ( log ‘ ( 𝑛 + 1 ) ) ) |
| 44 | 43 | oveq2d | ⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
| 45 | fzfid | ⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 46 | 6 | nnrecred | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 47 | 46 | recnd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 48 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 49 | 18 | rpreccld | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℝ+ ) |
| 50 | rpaddcl | ⊢ ( ( 1 ∈ ℝ+ ∧ ( 1 / 𝑚 ) ∈ ℝ+ ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ) | |
| 51 | 48 49 50 | sylancr | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ) |
| 52 | 51 | relogcld | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ ℝ ) |
| 53 | 52 | recnd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ ℂ ) |
| 54 | 45 47 53 | fsumsub | ⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ) |
| 55 | oveq2 | ⊢ ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) ) | |
| 56 | 55 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑚 ) ) ) |
| 57 | 56 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
| 58 | 55 57 | oveq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) = ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ) |
| 59 | ovex | ⊢ ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ∈ V | |
| 60 | 58 4 59 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( 𝑇 ‘ 𝑚 ) = ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ) |
| 61 | 6 60 | syl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 𝑇 ‘ 𝑚 ) = ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ) |
| 62 | id | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) | |
| 63 | 62 28 | eleqtrdi | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 64 | 46 52 | resubcld | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ∈ ℝ ) |
| 65 | 64 | recnd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ∈ ℂ ) |
| 66 | 61 63 65 | fsumser | ⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) = ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 67 | 54 66 | eqtr3d | ⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) = ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 68 | 44 67 | eqtr3d | ⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 69 | 68 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 70 | 1z | ⊢ 1 ∈ ℤ | |
| 71 | seqfn | ⊢ ( 1 ∈ ℤ → seq 1 ( + , 𝑇 ) Fn ( ℤ≥ ‘ 1 ) ) | |
| 72 | 70 71 | ax-mp | ⊢ seq 1 ( + , 𝑇 ) Fn ( ℤ≥ ‘ 1 ) |
| 73 | 28 | fneq2i | ⊢ ( seq 1 ( + , 𝑇 ) Fn ℕ ↔ seq 1 ( + , 𝑇 ) Fn ( ℤ≥ ‘ 1 ) ) |
| 74 | 72 73 | mpbir | ⊢ seq 1 ( + , 𝑇 ) Fn ℕ |
| 75 | dffn5 | ⊢ ( seq 1 ( + , 𝑇 ) Fn ℕ ↔ seq 1 ( + , 𝑇 ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) ) | |
| 76 | 74 75 | mpbi | ⊢ seq 1 ( + , 𝑇 ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 77 | 69 2 76 | 3eqtr4i | ⊢ 𝐺 = seq 1 ( + , 𝑇 ) |