This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for emcl . The function H is the difference between F and G . (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | ||
| emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | ||
| Assertion | emcllem3 | ⊢ ( 𝑁 ∈ ℕ → ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) − ( 𝐺 ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | emcl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) | |
| 2 | emcl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) | |
| 3 | emcl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) | |
| 4 | peano2nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 5 | 4 | nnrpd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ+ ) |
| 6 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 7 | 5 6 | relogdivd | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) = ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ) |
| 8 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 9 | 1cnd | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) | |
| 10 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 11 | 8 9 8 10 | divdird | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) = ( ( 𝑁 / 𝑁 ) + ( 1 / 𝑁 ) ) ) |
| 12 | 8 10 | dividd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / 𝑁 ) = 1 ) |
| 13 | 12 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 𝑁 ) + ( 1 / 𝑁 ) ) = ( 1 + ( 1 / 𝑁 ) ) ) |
| 14 | 11 13 | eqtr2d | ⊢ ( 𝑁 ∈ ℕ → ( 1 + ( 1 / 𝑁 ) ) = ( ( 𝑁 + 1 ) / 𝑁 ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) = ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
| 16 | fzfid | ⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 17 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝑁 ) → 𝑚 ∈ ℕ ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → 𝑚 ∈ ℕ ) |
| 19 | 18 | nnrecred | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 20 | 16 19 | fsumrecl | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 21 | 20 | recnd | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ∈ ℂ ) |
| 22 | 6 | relogcld | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 23 | 22 | recnd | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 24 | 5 | relogcld | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 25 | 24 | recnd | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 26 | 21 23 25 | nnncan1d | ⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) − ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) = ( ( log ‘ ( 𝑁 + 1 ) ) − ( log ‘ 𝑁 ) ) ) |
| 27 | 7 15 26 | 3eqtr4d | ⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) − ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 1 / 𝑛 ) = ( 1 / 𝑁 ) ) | |
| 29 | 28 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑁 ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) ) |
| 31 | fvex | ⊢ ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) ∈ V | |
| 32 | 30 3 31 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( 𝐻 ‘ 𝑁 ) = ( log ‘ ( 1 + ( 1 / 𝑁 ) ) ) ) |
| 33 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) | |
| 34 | 33 | sumeq1d | ⊢ ( 𝑛 = 𝑁 → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) ) |
| 35 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( log ‘ 𝑛 ) = ( log ‘ 𝑁 ) ) | |
| 36 | 34 35 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) |
| 37 | ovex | ⊢ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ∈ V | |
| 38 | 36 1 37 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) ) |
| 39 | fvoveq1 | ⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 𝑛 + 1 ) ) = ( log ‘ ( 𝑁 + 1 ) ) ) | |
| 40 | 34 39 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 41 | ovex | ⊢ ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ∈ V | |
| 42 | 40 2 41 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( 𝐺 ‘ 𝑁 ) = ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) |
| 43 | 38 42 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐹 ‘ 𝑁 ) − ( 𝐺 ‘ 𝑁 ) ) = ( ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ 𝑁 ) ) − ( Σ 𝑚 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 44 | 27 32 43 | 3eqtr4d | ⊢ ( 𝑁 ∈ ℕ → ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑁 ) − ( 𝐺 ‘ 𝑁 ) ) ) |