This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrfi | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) → 𝐴 ∈ V ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) → 𝐴 ∈ V ) ) |
| 3 | inex1g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ ∩ 𝑣 ) ∈ V ) | |
| 4 | eleq1 | ⊢ ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ( 𝐴 ∈ V ↔ ( 𝐵 ∩ ∩ 𝑣 ) ∈ V ) ) | |
| 5 | 3 4 | syl5ibrcom | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → 𝐴 ∈ V ) ) |
| 6 | 5 | rexlimdvw | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → 𝐴 ∈ V ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → 𝐴 ∈ V ) ) |
| 8 | simpr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → 𝐴 ∈ V ) | |
| 9 | snex | ⊢ { 𝐵 } ∈ V | |
| 10 | pwexg | ⊢ ( 𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V ) | |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → 𝒫 𝐵 ∈ V ) |
| 12 | simplr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → 𝐶 ⊆ 𝒫 𝐵 ) | |
| 13 | 11 12 | ssexd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → 𝐶 ∈ V ) |
| 14 | unexg | ⊢ ( ( { 𝐵 } ∈ V ∧ 𝐶 ∈ V ) → ( { 𝐵 } ∪ 𝐶 ) ∈ V ) | |
| 15 | 9 13 14 | sylancr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( { 𝐵 } ∪ 𝐶 ) ∈ V ) |
| 16 | elfi | ⊢ ( ( 𝐴 ∈ V ∧ ( { 𝐵 } ∪ 𝐶 ) ∈ V ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ) ) | |
| 17 | 8 15 16 | syl2anc | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ) ) |
| 18 | inss1 | ⊢ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ⊆ 𝒫 ( { 𝐵 } ∪ 𝐶 ) | |
| 19 | uncom | ⊢ ( { 𝐵 } ∪ 𝐶 ) = ( 𝐶 ∪ { 𝐵 } ) | |
| 20 | 19 | pweqi | ⊢ 𝒫 ( { 𝐵 } ∪ 𝐶 ) = 𝒫 ( 𝐶 ∪ { 𝐵 } ) |
| 21 | 18 20 | sseqtri | ⊢ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ⊆ 𝒫 ( 𝐶 ∪ { 𝐵 } ) |
| 22 | 21 | sseli | ⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → 𝑤 ∈ 𝒫 ( 𝐶 ∪ { 𝐵 } ) ) |
| 23 | 9 | elpwun | ⊢ ( 𝑤 ∈ 𝒫 ( 𝐶 ∪ { 𝐵 } ) ↔ ( 𝑤 ∖ { 𝐵 } ) ∈ 𝒫 𝐶 ) |
| 24 | 22 23 | sylib | ⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → ( 𝑤 ∖ { 𝐵 } ) ∈ 𝒫 𝐶 ) |
| 25 | 24 | ad2antrl | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝑤 ∖ { 𝐵 } ) ∈ 𝒫 𝐶 ) |
| 26 | inss2 | ⊢ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ⊆ Fin | |
| 27 | 26 | sseli | ⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → 𝑤 ∈ Fin ) |
| 28 | diffi | ⊢ ( 𝑤 ∈ Fin → ( 𝑤 ∖ { 𝐵 } ) ∈ Fin ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → ( 𝑤 ∖ { 𝐵 } ) ∈ Fin ) |
| 30 | 29 | ad2antrl | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝑤 ∖ { 𝐵 } ) ∈ Fin ) |
| 31 | 25 30 | elind | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝑤 ∖ { 𝐵 } ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 32 | incom | ⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) | |
| 33 | simprr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ∩ 𝑤 ) | |
| 34 | simplr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 ∈ V ) | |
| 35 | 33 34 | eqeltrrd | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∩ 𝑤 ∈ V ) |
| 36 | intex | ⊢ ( 𝑤 ≠ ∅ ↔ ∩ 𝑤 ∈ V ) | |
| 37 | 35 36 | sylibr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝑤 ≠ ∅ ) |
| 38 | intssuni | ⊢ ( 𝑤 ≠ ∅ → ∩ 𝑤 ⊆ ∪ 𝑤 ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∩ 𝑤 ⊆ ∪ 𝑤 ) |
| 40 | 18 | sseli | ⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → 𝑤 ∈ 𝒫 ( { 𝐵 } ∪ 𝐶 ) ) |
| 41 | 40 | elpwid | ⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → 𝑤 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 42 | 41 | ad2antrl | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝑤 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 43 | pwidg | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝒫 𝐵 ) | |
| 44 | 43 | snssd | ⊢ ( 𝐵 ∈ 𝑉 → { 𝐵 } ⊆ 𝒫 𝐵 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → { 𝐵 } ⊆ 𝒫 𝐵 ) |
| 46 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → 𝐶 ⊆ 𝒫 𝐵 ) | |
| 47 | 45 46 | unssd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( { 𝐵 } ∪ 𝐶 ) ⊆ 𝒫 𝐵 ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( { 𝐵 } ∪ 𝐶 ) ⊆ 𝒫 𝐵 ) |
| 49 | 42 48 | sstrd | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝑤 ⊆ 𝒫 𝐵 ) |
| 50 | sspwuni | ⊢ ( 𝑤 ⊆ 𝒫 𝐵 ↔ ∪ 𝑤 ⊆ 𝐵 ) | |
| 51 | 49 50 | sylib | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∪ 𝑤 ⊆ 𝐵 ) |
| 52 | 39 51 | sstrd | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∩ 𝑤 ⊆ 𝐵 ) |
| 53 | 33 52 | eqsstrd | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 ⊆ 𝐵 ) |
| 54 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) | |
| 55 | 53 54 | sylib | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 56 | 32 55 | eqtr2id | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ( 𝐵 ∩ 𝐴 ) ) |
| 57 | ineq2 | ⊢ ( 𝐴 = ∩ 𝑤 → ( 𝐵 ∩ 𝐴 ) = ( 𝐵 ∩ ∩ 𝑤 ) ) | |
| 58 | 57 | ad2antll | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝐵 ∩ 𝐴 ) = ( 𝐵 ∩ ∩ 𝑤 ) ) |
| 59 | 56 58 | eqtrd | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ) |
| 60 | intun | ⊢ ∩ ( { 𝐵 } ∪ 𝑤 ) = ( ∩ { 𝐵 } ∩ ∩ 𝑤 ) | |
| 61 | intsng | ⊢ ( 𝐵 ∈ 𝑉 → ∩ { 𝐵 } = 𝐵 ) | |
| 62 | 61 | ineq1d | ⊢ ( 𝐵 ∈ 𝑉 → ( ∩ { 𝐵 } ∩ ∩ 𝑤 ) = ( 𝐵 ∩ ∩ 𝑤 ) ) |
| 63 | 60 62 | eqtr2id | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ ∩ 𝑤 ) = ∩ ( { 𝐵 } ∪ 𝑤 ) ) |
| 64 | 63 | ad3antrrr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝐵 ∩ ∩ 𝑤 ) = ∩ ( { 𝐵 } ∪ 𝑤 ) ) |
| 65 | 59 64 | eqtrd | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ∩ ( { 𝐵 } ∪ 𝑤 ) ) |
| 66 | undif2 | ⊢ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ( { 𝐵 } ∪ 𝑤 ) | |
| 67 | 66 | inteqi | ⊢ ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ∩ ( { 𝐵 } ∪ 𝑤 ) |
| 68 | 65 67 | eqtr4di | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 69 | intun | ⊢ ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ( ∩ { 𝐵 } ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) | |
| 70 | 61 | ineq1d | ⊢ ( 𝐵 ∈ 𝑉 → ( ∩ { 𝐵 } ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 71 | 69 70 | eqtrid | ⊢ ( 𝐵 ∈ 𝑉 → ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 72 | 71 | ad3antrrr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 73 | 68 72 | eqtrd | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 74 | inteq | ⊢ ( 𝑣 = ( 𝑤 ∖ { 𝐵 } ) → ∩ 𝑣 = ∩ ( 𝑤 ∖ { 𝐵 } ) ) | |
| 75 | 74 | ineq2d | ⊢ ( 𝑣 = ( 𝑤 ∖ { 𝐵 } ) → ( 𝐵 ∩ ∩ 𝑣 ) = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 76 | 75 | rspceeqv | ⊢ ( ( ( 𝑤 ∖ { 𝐵 } ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝐴 = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) |
| 77 | 31 73 76 | syl2anc | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) |
| 78 | 77 | rexlimdvaa | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 → ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |
| 79 | ssun1 | ⊢ { 𝐵 } ⊆ ( { 𝐵 } ∪ 𝐶 ) | |
| 80 | 79 | a1i | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝐵 } ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 81 | inss1 | ⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝒫 𝐶 | |
| 82 | 81 | sseli | ⊢ ( 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑣 ∈ 𝒫 𝐶 ) |
| 83 | elpwi | ⊢ ( 𝑣 ∈ 𝒫 𝐶 → 𝑣 ⊆ 𝐶 ) | |
| 84 | ssun4 | ⊢ ( 𝑣 ⊆ 𝐶 → 𝑣 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) | |
| 85 | 82 83 84 | 3syl | ⊢ ( 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑣 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 86 | 85 | adantl | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑣 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 87 | 80 86 | unssd | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝐵 } ∪ 𝑣 ) ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 88 | vex | ⊢ 𝑣 ∈ V | |
| 89 | 9 88 | unex | ⊢ ( { 𝐵 } ∪ 𝑣 ) ∈ V |
| 90 | 89 | elpw | ⊢ ( ( { 𝐵 } ∪ 𝑣 ) ∈ 𝒫 ( { 𝐵 } ∪ 𝐶 ) ↔ ( { 𝐵 } ∪ 𝑣 ) ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 91 | 87 90 | sylibr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝐵 } ∪ 𝑣 ) ∈ 𝒫 ( { 𝐵 } ∪ 𝐶 ) ) |
| 92 | snfi | ⊢ { 𝐵 } ∈ Fin | |
| 93 | inss2 | ⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ Fin | |
| 94 | 93 | sseli | ⊢ ( 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑣 ∈ Fin ) |
| 95 | 94 | adantl | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑣 ∈ Fin ) |
| 96 | unfi | ⊢ ( ( { 𝐵 } ∈ Fin ∧ 𝑣 ∈ Fin ) → ( { 𝐵 } ∪ 𝑣 ) ∈ Fin ) | |
| 97 | 92 95 96 | sylancr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝐵 } ∪ 𝑣 ) ∈ Fin ) |
| 98 | 91 97 | elind | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝐵 } ∪ 𝑣 ) ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ) |
| 99 | 61 | eqcomd | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ∩ { 𝐵 } ) |
| 100 | 99 | ineq1d | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ ∩ 𝑣 ) = ( ∩ { 𝐵 } ∩ ∩ 𝑣 ) ) |
| 101 | intun | ⊢ ∩ ( { 𝐵 } ∪ 𝑣 ) = ( ∩ { 𝐵 } ∩ ∩ 𝑣 ) | |
| 102 | 100 101 | eqtr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ ∩ 𝑣 ) = ∩ ( { 𝐵 } ∪ 𝑣 ) ) |
| 103 | 102 | ad3antrrr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐵 ∩ ∩ 𝑣 ) = ∩ ( { 𝐵 } ∪ 𝑣 ) ) |
| 104 | inteq | ⊢ ( 𝑤 = ( { 𝐵 } ∪ 𝑣 ) → ∩ 𝑤 = ∩ ( { 𝐵 } ∪ 𝑣 ) ) | |
| 105 | 104 | rspceeqv | ⊢ ( ( ( { 𝐵 } ∪ 𝑣 ) ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ ( 𝐵 ∩ ∩ 𝑣 ) = ∩ ( { 𝐵 } ∪ 𝑣 ) ) → ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ( 𝐵 ∩ ∩ 𝑣 ) = ∩ 𝑤 ) |
| 106 | 98 103 105 | syl2anc | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ( 𝐵 ∩ ∩ 𝑣 ) = ∩ 𝑤 ) |
| 107 | eqeq1 | ⊢ ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ( 𝐴 = ∩ 𝑤 ↔ ( 𝐵 ∩ ∩ 𝑣 ) = ∩ 𝑤 ) ) | |
| 108 | 107 | rexbidv | ⊢ ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ( ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ↔ ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ( 𝐵 ∩ ∩ 𝑣 ) = ∩ 𝑤 ) ) |
| 109 | 106 108 | syl5ibrcom | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ) ) |
| 110 | 109 | rexlimdva | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ) ) |
| 111 | 78 110 | impbid | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |
| 112 | 17 111 | bitrd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |
| 113 | 112 | ex | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ V → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) ) |
| 114 | 2 7 113 | pm5.21ndd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |