This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrfirn | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran 𝐹 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn | ⊢ ( 𝐹 : 𝐼 ⟶ 𝒫 𝐵 → ran 𝐹 ⊆ 𝒫 𝐵 ) | |
| 2 | elrfi | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ran 𝐹 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran 𝐹 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran 𝐹 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ) ) |
| 4 | imassrn | ⊢ ( 𝐹 “ 𝑣 ) ⊆ ran 𝐹 | |
| 5 | pwexg | ⊢ ( 𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V ) | |
| 6 | ssexg | ⊢ ( ( ran 𝐹 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V ) → ran 𝐹 ∈ V ) | |
| 7 | 1 5 6 | syl2anr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ran 𝐹 ∈ V ) |
| 8 | elpw2g | ⊢ ( ran 𝐹 ∈ V → ( ( 𝐹 “ 𝑣 ) ∈ 𝒫 ran 𝐹 ↔ ( 𝐹 “ 𝑣 ) ⊆ ran 𝐹 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( ( 𝐹 “ 𝑣 ) ∈ 𝒫 ran 𝐹 ↔ ( 𝐹 “ 𝑣 ) ⊆ ran 𝐹 ) ) |
| 10 | 4 9 | mpbiri | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐹 “ 𝑣 ) ∈ 𝒫 ran 𝐹 ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐹 “ 𝑣 ) ∈ 𝒫 ran 𝐹 ) |
| 12 | ffun | ⊢ ( 𝐹 : 𝐼 ⟶ 𝒫 𝐵 → Fun 𝐹 ) | |
| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → Fun 𝐹 ) |
| 14 | inss2 | ⊢ ( 𝒫 𝐼 ∩ Fin ) ⊆ Fin | |
| 15 | 14 | sseli | ⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ∈ Fin ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝑣 ∈ Fin ) |
| 17 | imafi | ⊢ ( ( Fun 𝐹 ∧ 𝑣 ∈ Fin ) → ( 𝐹 “ 𝑣 ) ∈ Fin ) | |
| 18 | 13 16 17 | syl2anc | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐹 “ 𝑣 ) ∈ Fin ) |
| 19 | 11 18 | elind | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐹 “ 𝑣 ) ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) |
| 20 | ffn | ⊢ ( 𝐹 : 𝐼 ⟶ 𝒫 𝐵 → 𝐹 Fn 𝐼 ) | |
| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → 𝐹 Fn 𝐼 ) |
| 22 | inss1 | ⊢ ( 𝒫 ran 𝐹 ∩ Fin ) ⊆ 𝒫 ran 𝐹 | |
| 23 | 22 | sseli | ⊢ ( 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) → 𝑤 ∈ 𝒫 ran 𝐹 ) |
| 24 | 23 | elpwid | ⊢ ( 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) → 𝑤 ⊆ ran 𝐹 ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → 𝑤 ⊆ ran 𝐹 ) |
| 26 | inss2 | ⊢ ( 𝒫 ran 𝐹 ∩ Fin ) ⊆ Fin | |
| 27 | 26 | sseli | ⊢ ( 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) → 𝑤 ∈ Fin ) |
| 28 | 27 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → 𝑤 ∈ Fin ) |
| 29 | fipreima | ⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝑤 ⊆ ran 𝐹 ∧ 𝑤 ∈ Fin ) → ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ( 𝐹 “ 𝑣 ) = 𝑤 ) | |
| 30 | 21 25 28 29 | syl3anc | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ( 𝐹 “ 𝑣 ) = 𝑤 ) |
| 31 | eqcom | ⊢ ( ( 𝐹 “ 𝑣 ) = 𝑤 ↔ 𝑤 = ( 𝐹 “ 𝑣 ) ) | |
| 32 | 31 | rexbii | ⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ( 𝐹 “ 𝑣 ) = 𝑤 ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝑤 = ( 𝐹 “ 𝑣 ) ) |
| 33 | 30 32 | sylib | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝑤 = ( 𝐹 “ 𝑣 ) ) |
| 34 | inteq | ⊢ ( 𝑤 = ( 𝐹 “ 𝑣 ) → ∩ 𝑤 = ∩ ( 𝐹 “ 𝑣 ) ) | |
| 35 | 34 | ineq2d | ⊢ ( 𝑤 = ( 𝐹 “ 𝑣 ) → ( 𝐵 ∩ ∩ 𝑤 ) = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ) |
| 36 | 35 | eqeq2d | ⊢ ( 𝑤 = ( 𝐹 “ 𝑣 ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ↔ 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑤 = ( 𝐹 “ 𝑣 ) ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ↔ 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ) ) |
| 38 | 19 33 37 | rexxfrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( ∃ 𝑤 ∈ ( 𝒫 ran 𝐹 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ) ) |
| 39 | 20 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝐹 Fn 𝐼 ) |
| 40 | inss1 | ⊢ ( 𝒫 𝐼 ∩ Fin ) ⊆ 𝒫 𝐼 | |
| 41 | 40 | sseli | ⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ∈ 𝒫 𝐼 ) |
| 42 | 41 | elpwid | ⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ⊆ 𝐼 ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → 𝑣 ⊆ 𝐼 ) |
| 44 | imaiinfv | ⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝑣 ⊆ 𝐼 ) → ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) = ∩ ( 𝐹 “ 𝑣 ) ) | |
| 45 | 39 43 44 | syl2anc | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) = ∩ ( 𝐹 “ 𝑣 ) ) |
| 46 | 45 | eqcomd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ∩ ( 𝐹 “ 𝑣 ) = ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) |
| 47 | 46 | ineq2d | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 | 47 | eqeq2d | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ↔ 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 49 | 48 | rexbidva | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ ( 𝐹 “ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 | 3 38 49 | 3bitrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran 𝐹 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) |