This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class intersection of the union of two classes. Theorem 78 of Suppes p. 42. (Contributed by NM, 22-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intun | ⊢ ∩ ( 𝐴 ∪ 𝐵 ) = ( ∩ 𝐴 ∩ ∩ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 | ⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ↔ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ) | |
| 2 | elunant | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 | elint | ⊢ ( 𝑥 ∈ ∩ 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ) |
| 6 | 4 | elint | ⊢ ( 𝑥 ∈ ∩ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) |
| 7 | 5 6 | anbi12i | ⊢ ( ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵 ) ↔ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦 ) ) ) |
| 8 | 1 3 7 | 3bitr4i | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝑦 ) ↔ ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵 ) ) |
| 9 | 4 | elint | ⊢ ( 𝑥 ∈ ∩ ( 𝐴 ∪ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ 𝑦 ) ) |
| 10 | elin | ⊢ ( 𝑥 ∈ ( ∩ 𝐴 ∩ ∩ 𝐵 ) ↔ ( 𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵 ) ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( 𝑥 ∈ ∩ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( ∩ 𝐴 ∩ ∩ 𝐵 ) ) |
| 12 | 11 | eqriv | ⊢ ∩ ( 𝐴 ∪ 𝐵 ) = ( ∩ 𝐴 ∩ ∩ 𝐵 ) |