This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eldifpw.1 | ⊢ 𝐶 ∈ V | |
| Assertion | elpwun | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifpw.1 | ⊢ 𝐶 ∈ V | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) → 𝐴 ∈ V ) | |
| 3 | elex | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 → ( 𝐴 ∖ 𝐶 ) ∈ V ) | |
| 4 | difex2 | ⊢ ( 𝐶 ∈ V → ( 𝐴 ∈ V ↔ ( 𝐴 ∖ 𝐶 ) ∈ V ) ) | |
| 5 | 1 4 | ax-mp | ⊢ ( 𝐴 ∈ V ↔ ( 𝐴 ∖ 𝐶 ) ∈ V ) |
| 6 | 3 5 | sylibr | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 → 𝐴 ∈ V ) |
| 7 | elpwg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) | |
| 8 | uncom | ⊢ ( 𝐵 ∪ 𝐶 ) = ( 𝐶 ∪ 𝐵 ) | |
| 9 | 8 | sseq2i | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐶 ∪ 𝐵 ) ) |
| 10 | ssundif | ⊢ ( 𝐴 ⊆ ( 𝐶 ∪ 𝐵 ) ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) | |
| 11 | 9 10 | bitri | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) |
| 12 | difexg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ 𝐶 ) ∈ V ) | |
| 13 | elpwg | ⊢ ( ( 𝐴 ∖ 𝐶 ) ∈ V → ( ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 ∈ V → ( ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ↔ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐵 ) ) |
| 15 | 11 14 | bitr4id | ⊢ ( 𝐴 ∈ V → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ) ) |
| 16 | 7 15 | bitrd | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ) ) |
| 17 | 2 6 16 | pm5.21nii | ⊢ ( 𝐴 ∈ 𝒫 ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐶 ) ∈ 𝒫 𝐵 ) |