This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton of an irreducible word is an extension sequence. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgs1 | ⊢ ( 𝐴 ∈ 𝐷 → 〈“ 𝐴 ”〉 ∈ dom 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | eldifi | ⊢ ( 𝐴 ∈ ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) → 𝐴 ∈ 𝑊 ) | |
| 8 | 7 5 | eleq2s | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ 𝑊 ) |
| 9 | 8 | s1cld | ⊢ ( 𝐴 ∈ 𝐷 → 〈“ 𝐴 ”〉 ∈ Word 𝑊 ) |
| 10 | s1nz | ⊢ 〈“ 𝐴 ”〉 ≠ ∅ | |
| 11 | eldifsn | ⊢ ( 〈“ 𝐴 ”〉 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 〈“ 𝐴 ”〉 ∈ Word 𝑊 ∧ 〈“ 𝐴 ”〉 ≠ ∅ ) ) | |
| 12 | 9 10 11 | sylanblrc | ⊢ ( 𝐴 ∈ 𝐷 → 〈“ 𝐴 ”〉 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 13 | s1fv | ⊢ ( 𝐴 ∈ 𝐷 → ( 〈“ 𝐴 ”〉 ‘ 0 ) = 𝐴 ) | |
| 14 | id | ⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ 𝐷 ) | |
| 15 | 13 14 | eqeltrd | ⊢ ( 𝐴 ∈ 𝐷 → ( 〈“ 𝐴 ”〉 ‘ 0 ) ∈ 𝐷 ) |
| 16 | s1len | ⊢ ( ♯ ‘ 〈“ 𝐴 ”〉 ) = 1 | |
| 17 | 16 | a1i | ⊢ ( 𝐴 ∈ 𝐷 → ( ♯ ‘ 〈“ 𝐴 ”〉 ) = 1 ) |
| 18 | 17 | oveq2d | ⊢ ( 𝐴 ∈ 𝐷 → ( 1 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) = ( 1 ..^ 1 ) ) |
| 19 | fzo0 | ⊢ ( 1 ..^ 1 ) = ∅ | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝐴 ∈ 𝐷 → ( 1 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) = ∅ ) |
| 21 | rzal | ⊢ ( ( 1 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) = ∅ → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ( 〈“ 𝐴 ”〉 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 〈“ 𝐴 ”〉 ‘ ( 𝑖 − 1 ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝐴 ∈ 𝐷 → ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ( 〈“ 𝐴 ”〉 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 〈“ 𝐴 ”〉 ‘ ( 𝑖 − 1 ) ) ) ) |
| 23 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 〈“ 𝐴 ”〉 ∈ dom 𝑆 ↔ ( 〈“ 𝐴 ”〉 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 〈“ 𝐴 ”〉 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 〈“ 𝐴 ”〉 ) ) ( 〈“ 𝐴 ”〉 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 〈“ 𝐴 ”〉 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 24 | 12 15 22 23 | syl3anbrc | ⊢ ( 𝐴 ∈ 𝐷 → 〈“ 𝐴 ”〉 ∈ dom 𝑆 ) |