This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| efgredlem.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | ||
| efgredlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) | ||
| efgredlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) | ||
| efgredlem.4 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) | ||
| efgredlem.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | ||
| Assertion | efgredlema | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | efgredlem.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | |
| 8 | efgredlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) | |
| 9 | efgredlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) | |
| 10 | efgredlem.4 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) | |
| 11 | efgredlem.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | |
| 12 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝐵 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐵 ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 13 | 9 12 | syl | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 14 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐴 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 15 | 8 14 | syl | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 16 | 10 15 | eqtr3d | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 17 | 13 16 | eqtr3d | ⊢ ( 𝜑 → ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 18 | oveq1 | ⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ♯ ‘ 𝐴 ) − 1 ) = ( 1 − 1 ) ) | |
| 19 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 20 | 18 19 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ♯ ‘ 𝐴 ) − 1 ) = 0 ) |
| 21 | 20 | fveq2d | ⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ‘ 0 ) ) |
| 22 | 17 21 | sylan9eq | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) = ( 𝐴 ‘ 0 ) ) |
| 23 | 10 | eleq1d | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ∈ 𝐷 ↔ ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ) ) |
| 24 | 1 2 3 4 5 6 | efgs1b | ⊢ ( 𝐴 ∈ dom 𝑆 → ( ( 𝑆 ‘ 𝐴 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝐴 ) = 1 ) ) |
| 25 | 8 24 | syl | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝐴 ) = 1 ) ) |
| 26 | 1 2 3 4 5 6 | efgs1b | ⊢ ( 𝐵 ∈ dom 𝑆 → ( ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝐵 ) = 1 ) ) |
| 27 | 9 26 | syl | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝐵 ) = 1 ) ) |
| 28 | 23 25 27 | 3bitr3d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ( ♯ ‘ 𝐵 ) = 1 ) ) |
| 29 | 28 | biimpa | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
| 30 | oveq1 | ⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ♯ ‘ 𝐵 ) − 1 ) = ( 1 − 1 ) ) | |
| 31 | 30 19 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ♯ ‘ 𝐵 ) − 1 ) = 0 ) |
| 32 | 31 | fveq2d | ⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) = ( 𝐵 ‘ 0 ) ) |
| 33 | 29 32 | syl | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) = ( 𝐵 ‘ 0 ) ) |
| 34 | 22 33 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) = 1 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 35 | 11 34 | mtand | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐴 ) = 1 ) |
| 36 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐴 ∈ dom 𝑆 ↔ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑢 ∈ ( 1 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐴 ‘ 𝑢 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( 𝑢 − 1 ) ) ) ) ) |
| 37 | 36 | simp1bi | ⊢ ( 𝐴 ∈ dom 𝑆 → 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 38 | eldifsn | ⊢ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝐴 ∈ Word 𝑊 ∧ 𝐴 ≠ ∅ ) ) | |
| 39 | lennncl | ⊢ ( ( 𝐴 ∈ Word 𝑊 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 40 | 38 39 | sylbi | ⊢ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 41 | 8 37 40 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 42 | elnn1uz2 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) = 1 ∨ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 43 | 41 42 | sylib | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) = 1 ∨ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 44 | 43 | ord | ⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐴 ) = 1 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 45 | 35 44 | mpd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 46 | uz2m1nn | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) | |
| 47 | 45 46 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
| 48 | 35 28 | mtbid | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐵 ) = 1 ) |
| 49 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐵 ∈ dom 𝑆 ↔ ( 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑢 ∈ ( 1 ..^ ( ♯ ‘ 𝐵 ) ) ( 𝐵 ‘ 𝑢 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( 𝑢 − 1 ) ) ) ) ) |
| 50 | 49 | simp1bi | ⊢ ( 𝐵 ∈ dom 𝑆 → 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 51 | eldifsn | ⊢ ( 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝐵 ∈ Word 𝑊 ∧ 𝐵 ≠ ∅ ) ) | |
| 52 | lennncl | ⊢ ( ( 𝐵 ∈ Word 𝑊 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) | |
| 53 | 51 52 | sylbi | ⊢ ( 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 54 | 9 50 53 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 55 | elnn1uz2 | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐵 ) = 1 ∨ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 56 | 54 55 | sylib | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) = 1 ∨ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 57 | 56 | ord | ⊢ ( 𝜑 → ( ¬ ( ♯ ‘ 𝐵 ) = 1 → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 58 | 48 57 | mpd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 59 | uz2m1nn | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) | |
| 60 | 58 59 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) |
| 61 | 47 60 | jca | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) ) |