This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| Assertion | efgtlen | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ 𝐴 ∈ ran ( 𝑇 ‘ 𝑋 ) ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | 1 2 3 4 | efgtf | ⊢ ( 𝑋 ∈ 𝑊 → ( ( 𝑇 ‘ 𝑋 ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ 𝑋 ) : ( ( 0 ... ( ♯ ‘ 𝑋 ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 6 | 5 | simpld | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝑇 ‘ 𝑋 ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 7 | 6 | rneqd | ⊢ ( 𝑋 ∈ 𝑊 → ran ( 𝑇 ‘ 𝑋 ) = ran ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 8 | 7 | eleq2d | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝐴 ∈ ran ( 𝑇 ‘ 𝑋 ) ↔ 𝐴 ∈ ran ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) ) |
| 9 | eqid | ⊢ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) | |
| 10 | ovex | ⊢ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ∈ V | |
| 11 | 9 10 | elrnmpo | ⊢ ( 𝐴 ∈ ran ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) , 𝑏 ∈ ( 𝐼 × 2o ) ↦ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ↔ ∃ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∃ 𝑏 ∈ ( 𝐼 × 2o ) 𝐴 = ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) |
| 12 | 8 11 | bitrdi | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝐴 ∈ ran ( 𝑇 ‘ 𝑋 ) ↔ ∃ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∃ 𝑏 ∈ ( 𝐼 × 2o ) 𝐴 = ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) ) |
| 13 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 14 | 1 13 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 15 | simpl | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑋 ∈ 𝑊 ) | |
| 16 | 14 15 | sselid | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑋 ∈ Word ( 𝐼 × 2o ) ) |
| 17 | elfzuz | ⊢ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) → 𝑎 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 18 | 17 | ad2antrl | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑎 ∈ ( ℤ≥ ‘ 0 ) ) |
| 19 | eluzfz2b | ⊢ ( 𝑎 ∈ ( ℤ≥ ‘ 0 ) ↔ 𝑎 ∈ ( 0 ... 𝑎 ) ) | |
| 20 | 18 19 | sylib | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑎 ∈ ( 0 ... 𝑎 ) ) |
| 21 | simprl | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ) | |
| 22 | simprr | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑏 ∈ ( 𝐼 × 2o ) ) | |
| 23 | 3 | efgmf | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 24 | 23 | ffvelcdmi | ⊢ ( 𝑏 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑏 ) ∈ ( 𝐼 × 2o ) ) |
| 25 | 22 24 | syl | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑀 ‘ 𝑏 ) ∈ ( 𝐼 × 2o ) ) |
| 26 | 22 25 | s2cld | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 27 | 16 20 21 26 | spllen | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) = ( ( ♯ ‘ 𝑋 ) + ( ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) − ( 𝑎 − 𝑎 ) ) ) ) |
| 28 | s2len | ⊢ ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) = 2 | |
| 29 | 28 | a1i | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) = 2 ) |
| 30 | eluzelcn | ⊢ ( 𝑎 ∈ ( ℤ≥ ‘ 0 ) → 𝑎 ∈ ℂ ) | |
| 31 | 18 30 | syl | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → 𝑎 ∈ ℂ ) |
| 32 | 31 | subidd | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝑎 − 𝑎 ) = 0 ) |
| 33 | 29 32 | oveq12d | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) − ( 𝑎 − 𝑎 ) ) = ( 2 − 0 ) ) |
| 34 | 2cn | ⊢ 2 ∈ ℂ | |
| 35 | 34 | subid1i | ⊢ ( 2 − 0 ) = 2 |
| 36 | 33 35 | eqtrdi | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) − ( 𝑎 − 𝑎 ) ) = 2 ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ( ♯ ‘ 𝑋 ) + ( ( ♯ ‘ 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 ) − ( 𝑎 − 𝑎 ) ) ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ) |
| 38 | 27 37 | eqtrd | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( ♯ ‘ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ) |
| 39 | fveqeq2 | ⊢ ( 𝐴 = ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) → ( ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ↔ ( ♯ ‘ ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ) ) | |
| 40 | 38 39 | syl5ibrcom | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ ( 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∧ 𝑏 ∈ ( 𝐼 × 2o ) ) ) → ( 𝐴 = ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ) ) |
| 41 | 40 | rexlimdvva | ⊢ ( 𝑋 ∈ 𝑊 → ( ∃ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝑋 ) ) ∃ 𝑏 ∈ ( 𝐼 × 2o ) 𝐴 = ( 𝑋 splice 〈 𝑎 , 𝑎 , 〈“ 𝑏 ( 𝑀 ‘ 𝑏 ) ”〉 〉 ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ) ) |
| 42 | 12 41 | sylbid | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝐴 ∈ ran ( 𝑇 ‘ 𝑋 ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ) ) |
| 43 | 42 | imp | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ 𝐴 ∈ ran ( 𝑇 ‘ 𝑋 ) ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝑋 ) + 2 ) ) |