This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| Assertion | efginvrel1 | ⊢ ( 𝐴 ∈ 𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ 𝐴 ) ∼ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 6 | 1 5 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 7 | 6 | sseli | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ Word ( 𝐼 × 2o ) ) |
| 8 | revcl | ⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ∈ 𝑊 → ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ) |
| 10 | 3 | efgmf | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 11 | revco | ⊢ ( ( ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( reverse ‘ ( reverse ‘ 𝐴 ) ) ) = ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ ( reverse ‘ 𝐴 ) ) ) = ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) |
| 13 | revrev | ⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ ( reverse ‘ 𝐴 ) ) = 𝐴 ) | |
| 14 | 7 13 | syl | ⊢ ( 𝐴 ∈ 𝑊 → ( reverse ‘ ( reverse ‘ 𝐴 ) ) = 𝐴 ) |
| 15 | 14 | coeq2d | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ ( reverse ‘ 𝐴 ) ) ) = ( 𝑀 ∘ 𝐴 ) ) |
| 16 | 12 15 | eqtr3d | ⊢ ( 𝐴 ∈ 𝑊 → ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) = ( 𝑀 ∘ 𝐴 ) ) |
| 17 | 16 | coeq2d | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) = ( 𝑀 ∘ ( 𝑀 ∘ 𝐴 ) ) ) |
| 18 | wrdf | ⊢ ( 𝐴 ∈ Word ( 𝐼 × 2o ) → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼 × 2o ) ) | |
| 19 | 7 18 | syl | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼 × 2o ) ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝑐 ) ∈ ( 𝐼 × 2o ) ) |
| 21 | 3 | efgmnvl | ⊢ ( ( 𝐴 ‘ 𝑐 ) ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) = ( 𝐴 ‘ 𝑐 ) ) |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) = ( 𝐴 ‘ 𝑐 ) ) |
| 23 | 22 | mpteq2dva | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝐴 ‘ 𝑐 ) ) ) |
| 24 | 10 | ffvelcdmi | ⊢ ( ( 𝐴 ‘ 𝑐 ) ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ∈ ( 𝐼 × 2o ) ) |
| 25 | 20 24 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ∈ ( 𝐼 × 2o ) ) |
| 26 | fcompt | ⊢ ( ( 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ∧ 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ 𝐴 ) = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) | |
| 27 | 10 19 26 | sylancr | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ 𝐴 ) = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) |
| 28 | 10 | a1i | ⊢ ( 𝐴 ∈ 𝑊 → 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) |
| 29 | 28 | feqmptd | ⊢ ( 𝐴 ∈ 𝑊 → 𝑀 = ( 𝑎 ∈ ( 𝐼 × 2o ) ↦ ( 𝑀 ‘ 𝑎 ) ) ) |
| 30 | fveq2 | ⊢ ( 𝑎 = ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) → ( 𝑀 ‘ 𝑎 ) = ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) | |
| 31 | 25 27 29 30 | fmptco | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( 𝑀 ∘ 𝐴 ) ) = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴 ‘ 𝑐 ) ) ) ) ) |
| 32 | 19 | feqmptd | ⊢ ( 𝐴 ∈ 𝑊 → 𝐴 = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝐴 ‘ 𝑐 ) ) ) |
| 33 | 23 31 32 | 3eqtr4d | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( 𝑀 ∘ 𝐴 ) ) = 𝐴 ) |
| 34 | 17 33 | eqtrd | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) = 𝐴 ) |
| 35 | 34 | oveq2d | ⊢ ( 𝐴 ∈ 𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) ) = ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ 𝐴 ) ) |
| 36 | wrdco | ⊢ ( ( ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 37 | 9 10 36 | sylancl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 38 | 1 | efgrcl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 39 | 38 | simprd | ⊢ ( 𝐴 ∈ 𝑊 → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 40 | 37 39 | eleqtrrd | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 ) |
| 41 | 1 2 3 4 | efginvrel2 | ⊢ ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) ) ∼ ∅ ) |
| 42 | 40 41 | syl | ⊢ ( 𝐴 ∈ 𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) ) ∼ ∅ ) |
| 43 | 35 42 | eqbrtrrd | ⊢ ( 𝐴 ∈ 𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ 𝐴 ) ∼ ∅ ) |