This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s1co | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 〈“ 𝑆 ”〉 ) = 〈“ ( 𝐹 ‘ 𝑆 ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val | ⊢ ( 𝑆 ∈ 𝐴 → 〈“ 𝑆 ”〉 = { 〈 0 , 𝑆 〉 } ) | |
| 2 | 0cn | ⊢ 0 ∈ ℂ | |
| 3 | xpsng | ⊢ ( ( 0 ∈ ℂ ∧ 𝑆 ∈ 𝐴 ) → ( { 0 } × { 𝑆 } ) = { 〈 0 , 𝑆 〉 } ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑆 ∈ 𝐴 → ( { 0 } × { 𝑆 } ) = { 〈 0 , 𝑆 〉 } ) |
| 5 | 1 4 | eqtr4d | ⊢ ( 𝑆 ∈ 𝐴 → 〈“ 𝑆 ”〉 = ( { 0 } × { 𝑆 } ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 〈“ 𝑆 ”〉 = ( { 0 } × { 𝑆 } ) ) |
| 7 | 6 | coeq2d | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 〈“ 𝑆 ”〉 ) = ( 𝐹 ∘ ( { 0 } × { 𝑆 } ) ) ) |
| 8 | fvex | ⊢ ( 𝐹 ‘ 𝑆 ) ∈ V | |
| 9 | s1val | ⊢ ( ( 𝐹 ‘ 𝑆 ) ∈ V → 〈“ ( 𝐹 ‘ 𝑆 ) ”〉 = { 〈 0 , ( 𝐹 ‘ 𝑆 ) 〉 } ) | |
| 10 | 8 9 | ax-mp | ⊢ 〈“ ( 𝐹 ‘ 𝑆 ) ”〉 = { 〈 0 , ( 𝐹 ‘ 𝑆 ) 〉 } |
| 11 | c0ex | ⊢ 0 ∈ V | |
| 12 | 11 8 | xpsn | ⊢ ( { 0 } × { ( 𝐹 ‘ 𝑆 ) } ) = { 〈 0 , ( 𝐹 ‘ 𝑆 ) 〉 } |
| 13 | 10 12 | eqtr4i | ⊢ 〈“ ( 𝐹 ‘ 𝑆 ) ”〉 = ( { 0 } × { ( 𝐹 ‘ 𝑆 ) } ) |
| 14 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 15 | id | ⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐴 ) | |
| 16 | fcoconst | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝐹 ∘ ( { 0 } × { 𝑆 } ) ) = ( { 0 } × { ( 𝐹 ‘ 𝑆 ) } ) ) | |
| 17 | 14 15 16 | syl2anr | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( { 0 } × { 𝑆 } ) ) = ( { 0 } × { ( 𝐹 ‘ 𝑆 ) } ) ) |
| 18 | 13 17 | eqtr4id | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 〈“ ( 𝐹 ‘ 𝑆 ) ”〉 = ( 𝐹 ∘ ( { 0 } × { 𝑆 } ) ) ) |
| 19 | 7 18 | eqtr4d | ⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 〈“ 𝑆 ”〉 ) = 〈“ ( 𝐹 ‘ 𝑆 ) ”〉 ) |