This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvres2 . (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvres.k | |- K = ( TopOpen ` CCfld ) |
|
| dvres.t | |- T = ( K |`t S ) |
||
| dvres.g | |- G = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
||
| dvres.s | |- ( ph -> S C_ CC ) |
||
| dvres.f | |- ( ph -> F : A --> CC ) |
||
| dvres.a | |- ( ph -> A C_ S ) |
||
| dvres.b | |- ( ph -> B C_ S ) |
||
| dvres.y | |- ( ph -> y e. CC ) |
||
| dvres2lem.d | |- ( ph -> x ( S _D F ) y ) |
||
| dvres2lem.x | |- ( ph -> x e. B ) |
||
| Assertion | dvres2lem | |- ( ph -> x ( B _D ( F |` B ) ) y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvres.k | |- K = ( TopOpen ` CCfld ) |
|
| 2 | dvres.t | |- T = ( K |`t S ) |
|
| 3 | dvres.g | |- G = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
|
| 4 | dvres.s | |- ( ph -> S C_ CC ) |
|
| 5 | dvres.f | |- ( ph -> F : A --> CC ) |
|
| 6 | dvres.a | |- ( ph -> A C_ S ) |
|
| 7 | dvres.b | |- ( ph -> B C_ S ) |
|
| 8 | dvres.y | |- ( ph -> y e. CC ) |
|
| 9 | dvres2lem.d | |- ( ph -> x ( S _D F ) y ) |
|
| 10 | dvres2lem.x | |- ( ph -> x e. B ) |
|
| 11 | 1 | cnfldtop | |- K e. Top |
| 12 | cnex | |- CC e. _V |
|
| 13 | ssexg | |- ( ( S C_ CC /\ CC e. _V ) -> S e. _V ) |
|
| 14 | 4 12 13 | sylancl | |- ( ph -> S e. _V ) |
| 15 | resttop | |- ( ( K e. Top /\ S e. _V ) -> ( K |`t S ) e. Top ) |
|
| 16 | 11 14 15 | sylancr | |- ( ph -> ( K |`t S ) e. Top ) |
| 17 | 2 16 | eqeltrid | |- ( ph -> T e. Top ) |
| 18 | inss1 | |- ( A i^i B ) C_ A |
|
| 19 | 18 6 | sstrid | |- ( ph -> ( A i^i B ) C_ S ) |
| 20 | 1 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 21 | resttopon | |- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
|
| 22 | 20 4 21 | sylancr | |- ( ph -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 23 | 2 22 | eqeltrid | |- ( ph -> T e. ( TopOn ` S ) ) |
| 24 | toponuni | |- ( T e. ( TopOn ` S ) -> S = U. T ) |
|
| 25 | 23 24 | syl | |- ( ph -> S = U. T ) |
| 26 | 19 25 | sseqtrd | |- ( ph -> ( A i^i B ) C_ U. T ) |
| 27 | difssd | |- ( ph -> ( U. T \ B ) C_ U. T ) |
|
| 28 | 26 27 | unssd | |- ( ph -> ( ( A i^i B ) u. ( U. T \ B ) ) C_ U. T ) |
| 29 | inundif | |- ( ( A i^i B ) u. ( A \ B ) ) = A |
|
| 30 | 6 25 | sseqtrd | |- ( ph -> A C_ U. T ) |
| 31 | ssdif | |- ( A C_ U. T -> ( A \ B ) C_ ( U. T \ B ) ) |
|
| 32 | unss2 | |- ( ( A \ B ) C_ ( U. T \ B ) -> ( ( A i^i B ) u. ( A \ B ) ) C_ ( ( A i^i B ) u. ( U. T \ B ) ) ) |
|
| 33 | 30 31 32 | 3syl | |- ( ph -> ( ( A i^i B ) u. ( A \ B ) ) C_ ( ( A i^i B ) u. ( U. T \ B ) ) ) |
| 34 | 29 33 | eqsstrrid | |- ( ph -> A C_ ( ( A i^i B ) u. ( U. T \ B ) ) ) |
| 35 | eqid | |- U. T = U. T |
|
| 36 | 35 | ntrss | |- ( ( T e. Top /\ ( ( A i^i B ) u. ( U. T \ B ) ) C_ U. T /\ A C_ ( ( A i^i B ) u. ( U. T \ B ) ) ) -> ( ( int ` T ) ` A ) C_ ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ B ) ) ) ) |
| 37 | 17 28 34 36 | syl3anc | |- ( ph -> ( ( int ` T ) ` A ) C_ ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ B ) ) ) ) |
| 38 | 2 1 3 4 5 6 | eldv | |- ( ph -> ( x ( S _D F ) y <-> ( x e. ( ( int ` T ) ` A ) /\ y e. ( G limCC x ) ) ) ) |
| 39 | 9 38 | mpbid | |- ( ph -> ( x e. ( ( int ` T ) ` A ) /\ y e. ( G limCC x ) ) ) |
| 40 | 39 | simpld | |- ( ph -> x e. ( ( int ` T ) ` A ) ) |
| 41 | 37 40 | sseldd | |- ( ph -> x e. ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ B ) ) ) ) |
| 42 | 41 10 | elind | |- ( ph -> x e. ( ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ B ) ) ) i^i B ) ) |
| 43 | 7 25 | sseqtrd | |- ( ph -> B C_ U. T ) |
| 44 | inss2 | |- ( A i^i B ) C_ B |
|
| 45 | 44 | a1i | |- ( ph -> ( A i^i B ) C_ B ) |
| 46 | eqid | |- ( T |`t B ) = ( T |`t B ) |
|
| 47 | 35 46 | restntr | |- ( ( T e. Top /\ B C_ U. T /\ ( A i^i B ) C_ B ) -> ( ( int ` ( T |`t B ) ) ` ( A i^i B ) ) = ( ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ B ) ) ) i^i B ) ) |
| 48 | 17 43 45 47 | syl3anc | |- ( ph -> ( ( int ` ( T |`t B ) ) ` ( A i^i B ) ) = ( ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ B ) ) ) i^i B ) ) |
| 49 | 2 | oveq1i | |- ( T |`t B ) = ( ( K |`t S ) |`t B ) |
| 50 | 11 | a1i | |- ( ph -> K e. Top ) |
| 51 | restabs | |- ( ( K e. Top /\ B C_ S /\ S e. _V ) -> ( ( K |`t S ) |`t B ) = ( K |`t B ) ) |
|
| 52 | 50 7 14 51 | syl3anc | |- ( ph -> ( ( K |`t S ) |`t B ) = ( K |`t B ) ) |
| 53 | 49 52 | eqtrid | |- ( ph -> ( T |`t B ) = ( K |`t B ) ) |
| 54 | 53 | fveq2d | |- ( ph -> ( int ` ( T |`t B ) ) = ( int ` ( K |`t B ) ) ) |
| 55 | 54 | fveq1d | |- ( ph -> ( ( int ` ( T |`t B ) ) ` ( A i^i B ) ) = ( ( int ` ( K |`t B ) ) ` ( A i^i B ) ) ) |
| 56 | 48 55 | eqtr3d | |- ( ph -> ( ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ B ) ) ) i^i B ) = ( ( int ` ( K |`t B ) ) ` ( A i^i B ) ) ) |
| 57 | 42 56 | eleqtrd | |- ( ph -> x e. ( ( int ` ( K |`t B ) ) ` ( A i^i B ) ) ) |
| 58 | limcresi | |- ( G limCC x ) C_ ( ( G |` ( ( A i^i B ) \ { x } ) ) limCC x ) |
|
| 59 | 39 | simprd | |- ( ph -> y e. ( G limCC x ) ) |
| 60 | 58 59 | sselid | |- ( ph -> y e. ( ( G |` ( ( A i^i B ) \ { x } ) ) limCC x ) ) |
| 61 | difss | |- ( ( A i^i B ) \ { x } ) C_ ( A i^i B ) |
|
| 62 | 61 44 | sstri | |- ( ( A i^i B ) \ { x } ) C_ B |
| 63 | 62 | sseli | |- ( z e. ( ( A i^i B ) \ { x } ) -> z e. B ) |
| 64 | fvres | |- ( z e. B -> ( ( F |` B ) ` z ) = ( F ` z ) ) |
|
| 65 | 10 | fvresd | |- ( ph -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
| 66 | 64 65 | oveqan12rd | |- ( ( ph /\ z e. B ) -> ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) = ( ( F ` z ) - ( F ` x ) ) ) |
| 67 | 66 | oveq1d | |- ( ( ph /\ z e. B ) -> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) = ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 68 | 63 67 | sylan2 | |- ( ( ph /\ z e. ( ( A i^i B ) \ { x } ) ) -> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) = ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 69 | 68 | mpteq2dva | |- ( ph -> ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) ) |
| 70 | 3 | reseq1i | |- ( G |` ( ( A i^i B ) \ { x } ) ) = ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |` ( ( A i^i B ) \ { x } ) ) |
| 71 | ssdif | |- ( ( A i^i B ) C_ A -> ( ( A i^i B ) \ { x } ) C_ ( A \ { x } ) ) |
|
| 72 | resmpt | |- ( ( ( A i^i B ) \ { x } ) C_ ( A \ { x } ) -> ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |` ( ( A i^i B ) \ { x } ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) ) |
|
| 73 | 18 71 72 | mp2b | |- ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |` ( ( A i^i B ) \ { x } ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 74 | 70 73 | eqtri | |- ( G |` ( ( A i^i B ) \ { x } ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 75 | 69 74 | eqtr4di | |- ( ph -> ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) = ( G |` ( ( A i^i B ) \ { x } ) ) ) |
| 76 | 75 | oveq1d | |- ( ph -> ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) = ( ( G |` ( ( A i^i B ) \ { x } ) ) limCC x ) ) |
| 77 | 60 76 | eleqtrrd | |- ( ph -> y e. ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 78 | eqid | |- ( K |`t B ) = ( K |`t B ) |
|
| 79 | eqid | |- ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) |
|
| 80 | 7 4 | sstrd | |- ( ph -> B C_ CC ) |
| 81 | fresin | |- ( F : A --> CC -> ( F |` B ) : ( A i^i B ) --> CC ) |
|
| 82 | 5 81 | syl | |- ( ph -> ( F |` B ) : ( A i^i B ) --> CC ) |
| 83 | 78 1 79 80 82 45 | eldv | |- ( ph -> ( x ( B _D ( F |` B ) ) y <-> ( x e. ( ( int ` ( K |`t B ) ) ` ( A i^i B ) ) /\ y e. ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
| 84 | 57 77 83 | mpbir2and | |- ( ph -> x ( B _D ( F |` B ) ) y ) |