This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres , there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like Re ( x ) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvres2 | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ⊆ ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) | |
| 2 | 1 | a1i | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → Rel ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ) |
| 3 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 4 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 5 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | |
| 6 | simp1l | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑆 ⊆ ℂ ) | |
| 7 | simp1r | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 8 | simp2l | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐴 ⊆ 𝑆 ) | |
| 9 | simp2r | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝐵 ⊆ 𝑆 ) | |
| 10 | simp3r | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) | |
| 11 | 6 7 8 | dvcl | ⊢ ( ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑦 ∈ ℂ ) |
| 12 | 10 11 | mpdan | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 13 | simp3l | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥 ∈ 𝐵 ) | |
| 14 | 3 4 5 6 7 8 9 12 10 13 | dvres2lem | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) → 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ) |
| 15 | 14 | 3expia | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) → 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ) ) |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | 16 | brresi | ⊢ ( 𝑥 ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) 𝑦 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) |
| 18 | df-br | ⊢ ( 𝑥 ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ) | |
| 19 | 17 18 | bitr3i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ) |
| 20 | df-br | ⊢ ( 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) ) | |
| 21 | 15 19 20 | 3imtr3g | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) ) ) |
| 22 | 2 21 | relssdv | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ) ) → ( ( 𝑆 D 𝐹 ) ↾ 𝐵 ) ⊆ ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) ) |