This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of fsumdvdsmul as of 18-Apr-2025. (Contributed by Mario Carneiro, 2-Jul-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsmulf1o.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| dvdsmulf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| dvdsmulf1o.3 | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) | ||
| dvdsmulf1o.x | ⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } | ||
| dvdsmulf1o.y | ⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | ||
| dvdsmulf1o.z | ⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } | ||
| fsumdvdsmulOLD.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| fsumdvdsmulOLD.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) | ||
| fsumdvdsmulOLD.6 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) = 𝐷 ) | ||
| fsumdvdsmulOLD.7 | ⊢ ( 𝑖 = ( 𝑗 · 𝑘 ) → 𝐶 = 𝐷 ) | ||
| Assertion | fsumdvdsmulOLD | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑖 ∈ 𝑍 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmulf1o.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 2 | dvdsmulf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | dvdsmulf1o.3 | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) | |
| 4 | dvdsmulf1o.x | ⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } | |
| 5 | dvdsmulf1o.y | ⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | |
| 6 | dvdsmulf1o.z | ⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } | |
| 7 | fsumdvdsmulOLD.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 8 | fsumdvdsmulOLD.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) | |
| 9 | fsumdvdsmulOLD.6 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) = 𝐷 ) | |
| 10 | fsumdvdsmulOLD.7 | ⊢ ( 𝑖 = ( 𝑗 · 𝑘 ) → 𝐶 = 𝐷 ) | |
| 11 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) | |
| 12 | dvdsssfz1 | ⊢ ( 𝑀 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ( 1 ... 𝑀 ) ) | |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } ⊆ ( 1 ... 𝑀 ) ) |
| 14 | 4 13 | eqsstrid | ⊢ ( 𝜑 → 𝑋 ⊆ ( 1 ... 𝑀 ) ) |
| 15 | 11 14 | ssfid | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 16 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 17 | dvdsssfz1 | ⊢ ( 𝑁 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) | |
| 18 | 2 17 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
| 19 | 5 18 | eqsstrid | ⊢ ( 𝜑 → 𝑌 ⊆ ( 1 ... 𝑁 ) ) |
| 20 | 16 19 | ssfid | ⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
| 21 | 20 8 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑌 𝐵 ∈ ℂ ) |
| 22 | 15 21 7 | fsummulc1 | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑗 ∈ 𝑋 ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) ) |
| 23 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝑌 ∈ Fin ) |
| 24 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑌 ) → 𝐵 ∈ ℂ ) |
| 25 | 23 7 24 | fsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑘 ∈ 𝑌 ( 𝐴 · 𝐵 ) ) |
| 26 | 9 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑌 ) → ( 𝐴 · 𝐵 ) = 𝐷 ) |
| 27 | 26 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝑌 ( 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑌 𝐷 ) |
| 28 | 25 27 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑘 ∈ 𝑌 𝐷 ) |
| 29 | 28 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 ( 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 ) |
| 30 | fveq2 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( · ‘ 𝑧 ) = ( · ‘ 〈 𝑗 , 𝑘 〉 ) ) | |
| 31 | df-ov | ⊢ ( 𝑗 · 𝑘 ) = ( · ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 32 | 30 31 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( · ‘ 𝑧 ) = ( 𝑗 · 𝑘 ) ) |
| 33 | 32 | csbeq1d | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = ⦋ ( 𝑗 · 𝑘 ) / 𝑖 ⦌ 𝐶 ) |
| 34 | ovex | ⊢ ( 𝑗 · 𝑘 ) ∈ V | |
| 35 | 34 10 | csbie | ⊢ ⦋ ( 𝑗 · 𝑘 ) / 𝑖 ⦌ 𝐶 = 𝐷 |
| 36 | 33 35 | eqtrdi | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 = 𝐷 ) |
| 37 | 7 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐴 ∈ ℂ ) |
| 38 | 8 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐵 ∈ ℂ ) |
| 39 | 37 38 | mulcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 40 | 9 39 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌 ) ) → 𝐷 ∈ ℂ ) |
| 41 | 36 15 20 40 | fsumxp | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
| 42 | csbeq1a | ⊢ ( 𝑖 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ) | |
| 43 | nfcv | ⊢ Ⅎ 𝑤 𝐶 | |
| 44 | nfcsb1v | ⊢ Ⅎ 𝑖 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 | |
| 45 | 42 43 44 | cbvsum | ⊢ Σ 𝑖 ∈ 𝑍 𝐶 = Σ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 |
| 46 | csbeq1 | ⊢ ( 𝑤 = ( · ‘ 𝑧 ) → ⦋ 𝑤 / 𝑖 ⦌ 𝐶 = ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) | |
| 47 | xpfi | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑌 ∈ Fin ) → ( 𝑋 × 𝑌 ) ∈ Fin ) | |
| 48 | 15 20 47 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) ∈ Fin ) |
| 49 | 1 2 3 4 5 6 | dvdsmulf1o | ⊢ ( 𝜑 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |
| 50 | fvres | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) | |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( · ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( · ‘ 𝑧 ) ) |
| 52 | 40 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝑋 ∀ 𝑘 ∈ 𝑌 𝐷 ∈ ℂ ) |
| 53 | 36 | eleq1d | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → ( ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
| 54 | 53 | ralxp | ⊢ ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑗 ∈ 𝑋 ∀ 𝑘 ∈ 𝑌 𝐷 ∈ ℂ ) |
| 55 | 52 54 | sylibr | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 56 | ax-mulf | ⊢ · : ( ℂ × ℂ ) ⟶ ℂ | |
| 57 | ffn | ⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ → · Fn ( ℂ × ℂ ) ) | |
| 58 | 56 57 | ax-mp | ⊢ · Fn ( ℂ × ℂ ) |
| 59 | 4 | ssrab3 | ⊢ 𝑋 ⊆ ℕ |
| 60 | nnsscn | ⊢ ℕ ⊆ ℂ | |
| 61 | 59 60 | sstri | ⊢ 𝑋 ⊆ ℂ |
| 62 | 5 | ssrab3 | ⊢ 𝑌 ⊆ ℕ |
| 63 | 62 60 | sstri | ⊢ 𝑌 ⊆ ℂ |
| 64 | xpss12 | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) | |
| 65 | 61 63 64 | mp2an | ⊢ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) |
| 66 | 46 | eleq1d | ⊢ ( 𝑤 = ( · ‘ 𝑧 ) → ( ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 67 | 66 | ralima | ⊢ ( ( · Fn ( ℂ × ℂ ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ∀ 𝑤 ∈ ( · “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 68 | 58 65 67 | mp2an | ⊢ ( ∀ 𝑤 ∈ ( · “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 69 | df-ima | ⊢ ( · “ ( 𝑋 × 𝑌 ) ) = ran ( · ↾ ( 𝑋 × 𝑌 ) ) | |
| 70 | f1ofo | ⊢ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 → ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) | |
| 71 | forn | ⊢ ( ( · ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 → ran ( · ↾ ( 𝑋 × 𝑌 ) ) = 𝑍 ) | |
| 72 | 49 70 71 | 3syl | ⊢ ( 𝜑 → ran ( · ↾ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
| 73 | 69 72 | eqtrid | ⊢ ( 𝜑 → ( · “ ( 𝑋 × 𝑌 ) ) = 𝑍 ) |
| 74 | 73 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ( · “ ( 𝑋 × 𝑌 ) ) ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 75 | 68 74 | bitr3id | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ∈ ℂ ↔ ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) ) |
| 76 | 55 75 | mpbid | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 77 | 76 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ⦋ 𝑤 / 𝑖 ⦌ 𝐶 ∈ ℂ ) |
| 78 | 46 48 49 51 77 | fsumf1o | ⊢ ( 𝜑 → Σ 𝑤 ∈ 𝑍 ⦋ 𝑤 / 𝑖 ⦌ 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
| 79 | 45 78 | eqtrid | ⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑍 𝐶 = Σ 𝑧 ∈ ( 𝑋 × 𝑌 ) ⦋ ( · ‘ 𝑧 ) / 𝑖 ⦌ 𝐶 ) |
| 80 | 41 79 | eqtr4d | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑋 Σ 𝑘 ∈ 𝑌 𝐷 = Σ 𝑖 ∈ 𝑍 𝐶 ) |
| 81 | 22 29 80 | 3eqtrd | ⊢ ( 𝜑 → ( Σ 𝑗 ∈ 𝑋 𝐴 · Σ 𝑘 ∈ 𝑌 𝐵 ) = Σ 𝑖 ∈ 𝑍 𝐶 ) |