This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If M and N are two coprime integers, multiplication forms a bijection from the set of pairs <. j , k >. where j || M and k || N , to the set of divisors of M x. N . (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsmulf1o.1 | |- ( ph -> M e. NN ) |
|
| dvdsmulf1o.2 | |- ( ph -> N e. NN ) |
||
| dvdsmulf1o.3 | |- ( ph -> ( M gcd N ) = 1 ) |
||
| dvdsmulf1o.x | |- X = { x e. NN | x || M } |
||
| dvdsmulf1o.y | |- Y = { x e. NN | x || N } |
||
| dvdsmulf1o.z | |- Z = { x e. NN | x || ( M x. N ) } |
||
| Assertion | dvdsmulf1o | |- ( ph -> ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmulf1o.1 | |- ( ph -> M e. NN ) |
|
| 2 | dvdsmulf1o.2 | |- ( ph -> N e. NN ) |
|
| 3 | dvdsmulf1o.3 | |- ( ph -> ( M gcd N ) = 1 ) |
|
| 4 | dvdsmulf1o.x | |- X = { x e. NN | x || M } |
|
| 5 | dvdsmulf1o.y | |- Y = { x e. NN | x || N } |
|
| 6 | dvdsmulf1o.z | |- Z = { x e. NN | x || ( M x. N ) } |
|
| 7 | ax-mulf | |- x. : ( CC X. CC ) --> CC |
|
| 8 | ffn | |- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
|
| 9 | 7 8 | ax-mp | |- x. Fn ( CC X. CC ) |
| 10 | 4 | ssrab3 | |- X C_ NN |
| 11 | nnsscn | |- NN C_ CC |
|
| 12 | 10 11 | sstri | |- X C_ CC |
| 13 | 5 | ssrab3 | |- Y C_ NN |
| 14 | 13 11 | sstri | |- Y C_ CC |
| 15 | xpss12 | |- ( ( X C_ CC /\ Y C_ CC ) -> ( X X. Y ) C_ ( CC X. CC ) ) |
|
| 16 | 12 14 15 | mp2an | |- ( X X. Y ) C_ ( CC X. CC ) |
| 17 | fnssres | |- ( ( x. Fn ( CC X. CC ) /\ ( X X. Y ) C_ ( CC X. CC ) ) -> ( x. |` ( X X. Y ) ) Fn ( X X. Y ) ) |
|
| 18 | 9 16 17 | mp2an | |- ( x. |` ( X X. Y ) ) Fn ( X X. Y ) |
| 19 | 18 | a1i | |- ( ph -> ( x. |` ( X X. Y ) ) Fn ( X X. Y ) ) |
| 20 | ovres | |- ( ( i e. X /\ j e. Y ) -> ( i ( x. |` ( X X. Y ) ) j ) = ( i x. j ) ) |
|
| 21 | 20 | adantl | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( i ( x. |` ( X X. Y ) ) j ) = ( i x. j ) ) |
| 22 | breq1 | |- ( x = i -> ( x || M <-> i || M ) ) |
|
| 23 | 22 4 | elrab2 | |- ( i e. X <-> ( i e. NN /\ i || M ) ) |
| 24 | 23 | simplbi | |- ( i e. X -> i e. NN ) |
| 25 | 24 | ad2antrl | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> i e. NN ) |
| 26 | breq1 | |- ( x = j -> ( x || N <-> j || N ) ) |
|
| 27 | 26 5 | elrab2 | |- ( j e. Y <-> ( j e. NN /\ j || N ) ) |
| 28 | 27 | simplbi | |- ( j e. Y -> j e. NN ) |
| 29 | 28 | ad2antll | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> j e. NN ) |
| 30 | 25 29 | nnmulcld | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( i x. j ) e. NN ) |
| 31 | 27 | simprbi | |- ( j e. Y -> j || N ) |
| 32 | 31 | ad2antll | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> j || N ) |
| 33 | 23 | simprbi | |- ( i e. X -> i || M ) |
| 34 | 33 | ad2antrl | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> i || M ) |
| 35 | 29 | nnzd | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> j e. ZZ ) |
| 36 | 2 | adantr | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> N e. NN ) |
| 37 | 36 | nnzd | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> N e. ZZ ) |
| 38 | 25 | nnzd | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> i e. ZZ ) |
| 39 | dvdscmul | |- ( ( j e. ZZ /\ N e. ZZ /\ i e. ZZ ) -> ( j || N -> ( i x. j ) || ( i x. N ) ) ) |
|
| 40 | 35 37 38 39 | syl3anc | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( j || N -> ( i x. j ) || ( i x. N ) ) ) |
| 41 | 1 | adantr | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> M e. NN ) |
| 42 | 41 | nnzd | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> M e. ZZ ) |
| 43 | dvdsmulc | |- ( ( i e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( i || M -> ( i x. N ) || ( M x. N ) ) ) |
|
| 44 | 38 42 37 43 | syl3anc | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( i || M -> ( i x. N ) || ( M x. N ) ) ) |
| 45 | 30 | nnzd | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( i x. j ) e. ZZ ) |
| 46 | 38 37 | zmulcld | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( i x. N ) e. ZZ ) |
| 47 | 42 37 | zmulcld | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( M x. N ) e. ZZ ) |
| 48 | dvdstr | |- ( ( ( i x. j ) e. ZZ /\ ( i x. N ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( i x. j ) || ( i x. N ) /\ ( i x. N ) || ( M x. N ) ) -> ( i x. j ) || ( M x. N ) ) ) |
|
| 49 | 45 46 47 48 | syl3anc | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( ( ( i x. j ) || ( i x. N ) /\ ( i x. N ) || ( M x. N ) ) -> ( i x. j ) || ( M x. N ) ) ) |
| 50 | 40 44 49 | syl2and | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( ( j || N /\ i || M ) -> ( i x. j ) || ( M x. N ) ) ) |
| 51 | 32 34 50 | mp2and | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( i x. j ) || ( M x. N ) ) |
| 52 | breq1 | |- ( x = ( i x. j ) -> ( x || ( M x. N ) <-> ( i x. j ) || ( M x. N ) ) ) |
|
| 53 | 52 6 | elrab2 | |- ( ( i x. j ) e. Z <-> ( ( i x. j ) e. NN /\ ( i x. j ) || ( M x. N ) ) ) |
| 54 | 30 51 53 | sylanbrc | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( i x. j ) e. Z ) |
| 55 | 21 54 | eqeltrd | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> ( i ( x. |` ( X X. Y ) ) j ) e. Z ) |
| 56 | 55 | ralrimivva | |- ( ph -> A. i e. X A. j e. Y ( i ( x. |` ( X X. Y ) ) j ) e. Z ) |
| 57 | ffnov | |- ( ( x. |` ( X X. Y ) ) : ( X X. Y ) --> Z <-> ( ( x. |` ( X X. Y ) ) Fn ( X X. Y ) /\ A. i e. X A. j e. Y ( i ( x. |` ( X X. Y ) ) j ) e. Z ) ) |
|
| 58 | 19 56 57 | sylanbrc | |- ( ph -> ( x. |` ( X X. Y ) ) : ( X X. Y ) --> Z ) |
| 59 | 25 | adantr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i e. NN ) |
| 60 | 59 | nnnn0d | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i e. NN0 ) |
| 61 | simprll | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m e. X ) |
|
| 62 | breq1 | |- ( x = m -> ( x || M <-> m || M ) ) |
|
| 63 | 62 4 | elrab2 | |- ( m e. X <-> ( m e. NN /\ m || M ) ) |
| 64 | 63 | simplbi | |- ( m e. X -> m e. NN ) |
| 65 | 61 64 | syl | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m e. NN ) |
| 66 | 65 | nnnn0d | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m e. NN0 ) |
| 67 | 59 | nnzd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i e. ZZ ) |
| 68 | 29 | adantr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> j e. NN ) |
| 69 | 68 | nnzd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> j e. ZZ ) |
| 70 | dvdsmul1 | |- ( ( i e. ZZ /\ j e. ZZ ) -> i || ( i x. j ) ) |
|
| 71 | 67 69 70 | syl2anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i || ( i x. j ) ) |
| 72 | simprr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( i x. j ) = ( m x. n ) ) |
|
| 73 | 12 61 | sselid | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m e. CC ) |
| 74 | simprlr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> n e. Y ) |
|
| 75 | breq1 | |- ( x = n -> ( x || N <-> n || N ) ) |
|
| 76 | 75 5 | elrab2 | |- ( n e. Y <-> ( n e. NN /\ n || N ) ) |
| 77 | 76 | simplbi | |- ( n e. Y -> n e. NN ) |
| 78 | 74 77 | syl | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> n e. NN ) |
| 79 | 78 | nncnd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> n e. CC ) |
| 80 | 73 79 | mulcomd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( m x. n ) = ( n x. m ) ) |
| 81 | 72 80 | eqtrd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( i x. j ) = ( n x. m ) ) |
| 82 | 71 81 | breqtrd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i || ( n x. m ) ) |
| 83 | 78 | nnzd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> n e. ZZ ) |
| 84 | 37 | adantr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> N e. ZZ ) |
| 85 | 67 84 | gcdcomd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( i gcd N ) = ( N gcd i ) ) |
| 86 | 42 | adantr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> M e. ZZ ) |
| 87 | 2 | nnzd | |- ( ph -> N e. ZZ ) |
| 88 | 1 | nnzd | |- ( ph -> M e. ZZ ) |
| 89 | 87 88 | gcdcomd | |- ( ph -> ( N gcd M ) = ( M gcd N ) ) |
| 90 | 89 3 | eqtrd | |- ( ph -> ( N gcd M ) = 1 ) |
| 91 | 90 | ad2antrr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( N gcd M ) = 1 ) |
| 92 | 34 | adantr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i || M ) |
| 93 | rpdvds | |- ( ( ( N e. ZZ /\ i e. ZZ /\ M e. ZZ ) /\ ( ( N gcd M ) = 1 /\ i || M ) ) -> ( N gcd i ) = 1 ) |
|
| 94 | 84 67 86 91 92 93 | syl32anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( N gcd i ) = 1 ) |
| 95 | 85 94 | eqtrd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( i gcd N ) = 1 ) |
| 96 | 76 | simprbi | |- ( n e. Y -> n || N ) |
| 97 | 74 96 | syl | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> n || N ) |
| 98 | rpdvds | |- ( ( ( i e. ZZ /\ n e. ZZ /\ N e. ZZ ) /\ ( ( i gcd N ) = 1 /\ n || N ) ) -> ( i gcd n ) = 1 ) |
|
| 99 | 67 83 84 95 97 98 | syl32anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( i gcd n ) = 1 ) |
| 100 | 65 | nnzd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m e. ZZ ) |
| 101 | coprmdvds | |- ( ( i e. ZZ /\ n e. ZZ /\ m e. ZZ ) -> ( ( i || ( n x. m ) /\ ( i gcd n ) = 1 ) -> i || m ) ) |
|
| 102 | 67 83 100 101 | syl3anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( ( i || ( n x. m ) /\ ( i gcd n ) = 1 ) -> i || m ) ) |
| 103 | 82 99 102 | mp2and | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i || m ) |
| 104 | dvdsmul1 | |- ( ( m e. ZZ /\ n e. ZZ ) -> m || ( m x. n ) ) |
|
| 105 | 100 83 104 | syl2anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m || ( m x. n ) ) |
| 106 | 59 | nncnd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i e. CC ) |
| 107 | 68 | nncnd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> j e. CC ) |
| 108 | 106 107 | mulcomd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( i x. j ) = ( j x. i ) ) |
| 109 | 72 108 | eqtr3d | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( m x. n ) = ( j x. i ) ) |
| 110 | 105 109 | breqtrd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m || ( j x. i ) ) |
| 111 | 100 84 | gcdcomd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( m gcd N ) = ( N gcd m ) ) |
| 112 | 63 | simprbi | |- ( m e. X -> m || M ) |
| 113 | 61 112 | syl | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m || M ) |
| 114 | rpdvds | |- ( ( ( N e. ZZ /\ m e. ZZ /\ M e. ZZ ) /\ ( ( N gcd M ) = 1 /\ m || M ) ) -> ( N gcd m ) = 1 ) |
|
| 115 | 84 100 86 91 113 114 | syl32anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( N gcd m ) = 1 ) |
| 116 | 111 115 | eqtrd | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( m gcd N ) = 1 ) |
| 117 | 32 | adantr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> j || N ) |
| 118 | rpdvds | |- ( ( ( m e. ZZ /\ j e. ZZ /\ N e. ZZ ) /\ ( ( m gcd N ) = 1 /\ j || N ) ) -> ( m gcd j ) = 1 ) |
|
| 119 | 100 69 84 116 117 118 | syl32anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( m gcd j ) = 1 ) |
| 120 | coprmdvds | |- ( ( m e. ZZ /\ j e. ZZ /\ i e. ZZ ) -> ( ( m || ( j x. i ) /\ ( m gcd j ) = 1 ) -> m || i ) ) |
|
| 121 | 100 69 67 120 | syl3anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( ( m || ( j x. i ) /\ ( m gcd j ) = 1 ) -> m || i ) ) |
| 122 | 110 119 121 | mp2and | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> m || i ) |
| 123 | dvdseq | |- ( ( ( i e. NN0 /\ m e. NN0 ) /\ ( i || m /\ m || i ) ) -> i = m ) |
|
| 124 | 60 66 103 122 123 | syl22anc | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i = m ) |
| 125 | 59 | nnne0d | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> i =/= 0 ) |
| 126 | 124 | oveq1d | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( i x. n ) = ( m x. n ) ) |
| 127 | 72 126 | eqtr4d | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> ( i x. j ) = ( i x. n ) ) |
| 128 | 107 79 106 125 127 | mulcanad | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> j = n ) |
| 129 | 124 128 | opeq12d | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( ( m e. X /\ n e. Y ) /\ ( i x. j ) = ( m x. n ) ) ) -> <. i , j >. = <. m , n >. ) |
| 130 | 129 | expr | |- ( ( ( ph /\ ( i e. X /\ j e. Y ) ) /\ ( m e. X /\ n e. Y ) ) -> ( ( i x. j ) = ( m x. n ) -> <. i , j >. = <. m , n >. ) ) |
| 131 | 130 | ralrimivva | |- ( ( ph /\ ( i e. X /\ j e. Y ) ) -> A. m e. X A. n e. Y ( ( i x. j ) = ( m x. n ) -> <. i , j >. = <. m , n >. ) ) |
| 132 | 131 | ralrimivva | |- ( ph -> A. i e. X A. j e. Y A. m e. X A. n e. Y ( ( i x. j ) = ( m x. n ) -> <. i , j >. = <. m , n >. ) ) |
| 133 | fvres | |- ( u e. ( X X. Y ) -> ( ( x. |` ( X X. Y ) ) ` u ) = ( x. ` u ) ) |
|
| 134 | fvres | |- ( v e. ( X X. Y ) -> ( ( x. |` ( X X. Y ) ) ` v ) = ( x. ` v ) ) |
|
| 135 | 133 134 | eqeqan12d | |- ( ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) -> ( ( ( x. |` ( X X. Y ) ) ` u ) = ( ( x. |` ( X X. Y ) ) ` v ) <-> ( x. ` u ) = ( x. ` v ) ) ) |
| 136 | 135 | imbi1d | |- ( ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) -> ( ( ( ( x. |` ( X X. Y ) ) ` u ) = ( ( x. |` ( X X. Y ) ) ` v ) -> u = v ) <-> ( ( x. ` u ) = ( x. ` v ) -> u = v ) ) ) |
| 137 | 136 | ralbidva | |- ( u e. ( X X. Y ) -> ( A. v e. ( X X. Y ) ( ( ( x. |` ( X X. Y ) ) ` u ) = ( ( x. |` ( X X. Y ) ) ` v ) -> u = v ) <-> A. v e. ( X X. Y ) ( ( x. ` u ) = ( x. ` v ) -> u = v ) ) ) |
| 138 | 137 | ralbiia | |- ( A. u e. ( X X. Y ) A. v e. ( X X. Y ) ( ( ( x. |` ( X X. Y ) ) ` u ) = ( ( x. |` ( X X. Y ) ) ` v ) -> u = v ) <-> A. u e. ( X X. Y ) A. v e. ( X X. Y ) ( ( x. ` u ) = ( x. ` v ) -> u = v ) ) |
| 139 | fveq2 | |- ( v = <. m , n >. -> ( x. ` v ) = ( x. ` <. m , n >. ) ) |
|
| 140 | df-ov | |- ( m x. n ) = ( x. ` <. m , n >. ) |
|
| 141 | 139 140 | eqtr4di | |- ( v = <. m , n >. -> ( x. ` v ) = ( m x. n ) ) |
| 142 | 141 | eqeq2d | |- ( v = <. m , n >. -> ( ( x. ` u ) = ( x. ` v ) <-> ( x. ` u ) = ( m x. n ) ) ) |
| 143 | eqeq2 | |- ( v = <. m , n >. -> ( u = v <-> u = <. m , n >. ) ) |
|
| 144 | 142 143 | imbi12d | |- ( v = <. m , n >. -> ( ( ( x. ` u ) = ( x. ` v ) -> u = v ) <-> ( ( x. ` u ) = ( m x. n ) -> u = <. m , n >. ) ) ) |
| 145 | 144 | ralxp | |- ( A. v e. ( X X. Y ) ( ( x. ` u ) = ( x. ` v ) -> u = v ) <-> A. m e. X A. n e. Y ( ( x. ` u ) = ( m x. n ) -> u = <. m , n >. ) ) |
| 146 | fveq2 | |- ( u = <. i , j >. -> ( x. ` u ) = ( x. ` <. i , j >. ) ) |
|
| 147 | df-ov | |- ( i x. j ) = ( x. ` <. i , j >. ) |
|
| 148 | 146 147 | eqtr4di | |- ( u = <. i , j >. -> ( x. ` u ) = ( i x. j ) ) |
| 149 | 148 | eqeq1d | |- ( u = <. i , j >. -> ( ( x. ` u ) = ( m x. n ) <-> ( i x. j ) = ( m x. n ) ) ) |
| 150 | eqeq1 | |- ( u = <. i , j >. -> ( u = <. m , n >. <-> <. i , j >. = <. m , n >. ) ) |
|
| 151 | 149 150 | imbi12d | |- ( u = <. i , j >. -> ( ( ( x. ` u ) = ( m x. n ) -> u = <. m , n >. ) <-> ( ( i x. j ) = ( m x. n ) -> <. i , j >. = <. m , n >. ) ) ) |
| 152 | 151 | 2ralbidv | |- ( u = <. i , j >. -> ( A. m e. X A. n e. Y ( ( x. ` u ) = ( m x. n ) -> u = <. m , n >. ) <-> A. m e. X A. n e. Y ( ( i x. j ) = ( m x. n ) -> <. i , j >. = <. m , n >. ) ) ) |
| 153 | 145 152 | bitrid | |- ( u = <. i , j >. -> ( A. v e. ( X X. Y ) ( ( x. ` u ) = ( x. ` v ) -> u = v ) <-> A. m e. X A. n e. Y ( ( i x. j ) = ( m x. n ) -> <. i , j >. = <. m , n >. ) ) ) |
| 154 | 153 | ralxp | |- ( A. u e. ( X X. Y ) A. v e. ( X X. Y ) ( ( x. ` u ) = ( x. ` v ) -> u = v ) <-> A. i e. X A. j e. Y A. m e. X A. n e. Y ( ( i x. j ) = ( m x. n ) -> <. i , j >. = <. m , n >. ) ) |
| 155 | 138 154 | bitri | |- ( A. u e. ( X X. Y ) A. v e. ( X X. Y ) ( ( ( x. |` ( X X. Y ) ) ` u ) = ( ( x. |` ( X X. Y ) ) ` v ) -> u = v ) <-> A. i e. X A. j e. Y A. m e. X A. n e. Y ( ( i x. j ) = ( m x. n ) -> <. i , j >. = <. m , n >. ) ) |
| 156 | 132 155 | sylibr | |- ( ph -> A. u e. ( X X. Y ) A. v e. ( X X. Y ) ( ( ( x. |` ( X X. Y ) ) ` u ) = ( ( x. |` ( X X. Y ) ) ` v ) -> u = v ) ) |
| 157 | dff13 | |- ( ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-> Z <-> ( ( x. |` ( X X. Y ) ) : ( X X. Y ) --> Z /\ A. u e. ( X X. Y ) A. v e. ( X X. Y ) ( ( ( x. |` ( X X. Y ) ) ` u ) = ( ( x. |` ( X X. Y ) ) ` v ) -> u = v ) ) ) |
|
| 158 | 58 156 157 | sylanbrc | |- ( ph -> ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-> Z ) |
| 159 | breq1 | |- ( x = w -> ( x || ( M x. N ) <-> w || ( M x. N ) ) ) |
|
| 160 | 159 6 | elrab2 | |- ( w e. Z <-> ( w e. NN /\ w || ( M x. N ) ) ) |
| 161 | 160 | simplbi | |- ( w e. Z -> w e. NN ) |
| 162 | 161 | adantl | |- ( ( ph /\ w e. Z ) -> w e. NN ) |
| 163 | 162 | nnzd | |- ( ( ph /\ w e. Z ) -> w e. ZZ ) |
| 164 | 1 | adantr | |- ( ( ph /\ w e. Z ) -> M e. NN ) |
| 165 | 164 | nnzd | |- ( ( ph /\ w e. Z ) -> M e. ZZ ) |
| 166 | 164 | nnne0d | |- ( ( ph /\ w e. Z ) -> M =/= 0 ) |
| 167 | simpr | |- ( ( w = 0 /\ M = 0 ) -> M = 0 ) |
|
| 168 | 167 | necon3ai | |- ( M =/= 0 -> -. ( w = 0 /\ M = 0 ) ) |
| 169 | 166 168 | syl | |- ( ( ph /\ w e. Z ) -> -. ( w = 0 /\ M = 0 ) ) |
| 170 | gcdn0cl | |- ( ( ( w e. ZZ /\ M e. ZZ ) /\ -. ( w = 0 /\ M = 0 ) ) -> ( w gcd M ) e. NN ) |
|
| 171 | 163 165 169 170 | syl21anc | |- ( ( ph /\ w e. Z ) -> ( w gcd M ) e. NN ) |
| 172 | gcddvds | |- ( ( w e. ZZ /\ M e. ZZ ) -> ( ( w gcd M ) || w /\ ( w gcd M ) || M ) ) |
|
| 173 | 163 165 172 | syl2anc | |- ( ( ph /\ w e. Z ) -> ( ( w gcd M ) || w /\ ( w gcd M ) || M ) ) |
| 174 | 173 | simprd | |- ( ( ph /\ w e. Z ) -> ( w gcd M ) || M ) |
| 175 | breq1 | |- ( x = ( w gcd M ) -> ( x || M <-> ( w gcd M ) || M ) ) |
|
| 176 | 175 4 | elrab2 | |- ( ( w gcd M ) e. X <-> ( ( w gcd M ) e. NN /\ ( w gcd M ) || M ) ) |
| 177 | 171 174 176 | sylanbrc | |- ( ( ph /\ w e. Z ) -> ( w gcd M ) e. X ) |
| 178 | 2 | adantr | |- ( ( ph /\ w e. Z ) -> N e. NN ) |
| 179 | 178 | nnzd | |- ( ( ph /\ w e. Z ) -> N e. ZZ ) |
| 180 | 178 | nnne0d | |- ( ( ph /\ w e. Z ) -> N =/= 0 ) |
| 181 | simpr | |- ( ( w = 0 /\ N = 0 ) -> N = 0 ) |
|
| 182 | 181 | necon3ai | |- ( N =/= 0 -> -. ( w = 0 /\ N = 0 ) ) |
| 183 | 180 182 | syl | |- ( ( ph /\ w e. Z ) -> -. ( w = 0 /\ N = 0 ) ) |
| 184 | gcdn0cl | |- ( ( ( w e. ZZ /\ N e. ZZ ) /\ -. ( w = 0 /\ N = 0 ) ) -> ( w gcd N ) e. NN ) |
|
| 185 | 163 179 183 184 | syl21anc | |- ( ( ph /\ w e. Z ) -> ( w gcd N ) e. NN ) |
| 186 | gcddvds | |- ( ( w e. ZZ /\ N e. ZZ ) -> ( ( w gcd N ) || w /\ ( w gcd N ) || N ) ) |
|
| 187 | 163 179 186 | syl2anc | |- ( ( ph /\ w e. Z ) -> ( ( w gcd N ) || w /\ ( w gcd N ) || N ) ) |
| 188 | 187 | simprd | |- ( ( ph /\ w e. Z ) -> ( w gcd N ) || N ) |
| 189 | breq1 | |- ( x = ( w gcd N ) -> ( x || N <-> ( w gcd N ) || N ) ) |
|
| 190 | 189 5 | elrab2 | |- ( ( w gcd N ) e. Y <-> ( ( w gcd N ) e. NN /\ ( w gcd N ) || N ) ) |
| 191 | 185 188 190 | sylanbrc | |- ( ( ph /\ w e. Z ) -> ( w gcd N ) e. Y ) |
| 192 | 177 191 | opelxpd | |- ( ( ph /\ w e. Z ) -> <. ( w gcd M ) , ( w gcd N ) >. e. ( X X. Y ) ) |
| 193 | 192 | fvresd | |- ( ( ph /\ w e. Z ) -> ( ( x. |` ( X X. Y ) ) ` <. ( w gcd M ) , ( w gcd N ) >. ) = ( x. ` <. ( w gcd M ) , ( w gcd N ) >. ) ) |
| 194 | 3 | adantr | |- ( ( ph /\ w e. Z ) -> ( M gcd N ) = 1 ) |
| 195 | rpmulgcd2 | |- ( ( ( w e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( w gcd ( M x. N ) ) = ( ( w gcd M ) x. ( w gcd N ) ) ) |
|
| 196 | 163 165 179 194 195 | syl31anc | |- ( ( ph /\ w e. Z ) -> ( w gcd ( M x. N ) ) = ( ( w gcd M ) x. ( w gcd N ) ) ) |
| 197 | df-ov | |- ( ( w gcd M ) x. ( w gcd N ) ) = ( x. ` <. ( w gcd M ) , ( w gcd N ) >. ) |
|
| 198 | 196 197 | eqtrdi | |- ( ( ph /\ w e. Z ) -> ( w gcd ( M x. N ) ) = ( x. ` <. ( w gcd M ) , ( w gcd N ) >. ) ) |
| 199 | 160 | simprbi | |- ( w e. Z -> w || ( M x. N ) ) |
| 200 | 199 | adantl | |- ( ( ph /\ w e. Z ) -> w || ( M x. N ) ) |
| 201 | 1 2 | nnmulcld | |- ( ph -> ( M x. N ) e. NN ) |
| 202 | gcdeq | |- ( ( w e. NN /\ ( M x. N ) e. NN ) -> ( ( w gcd ( M x. N ) ) = w <-> w || ( M x. N ) ) ) |
|
| 203 | 161 201 202 | syl2anr | |- ( ( ph /\ w e. Z ) -> ( ( w gcd ( M x. N ) ) = w <-> w || ( M x. N ) ) ) |
| 204 | 200 203 | mpbird | |- ( ( ph /\ w e. Z ) -> ( w gcd ( M x. N ) ) = w ) |
| 205 | 193 198 204 | 3eqtr2rd | |- ( ( ph /\ w e. Z ) -> w = ( ( x. |` ( X X. Y ) ) ` <. ( w gcd M ) , ( w gcd N ) >. ) ) |
| 206 | fveq2 | |- ( u = <. ( w gcd M ) , ( w gcd N ) >. -> ( ( x. |` ( X X. Y ) ) ` u ) = ( ( x. |` ( X X. Y ) ) ` <. ( w gcd M ) , ( w gcd N ) >. ) ) |
|
| 207 | 206 | rspceeqv | |- ( ( <. ( w gcd M ) , ( w gcd N ) >. e. ( X X. Y ) /\ w = ( ( x. |` ( X X. Y ) ) ` <. ( w gcd M ) , ( w gcd N ) >. ) ) -> E. u e. ( X X. Y ) w = ( ( x. |` ( X X. Y ) ) ` u ) ) |
| 208 | 192 205 207 | syl2anc | |- ( ( ph /\ w e. Z ) -> E. u e. ( X X. Y ) w = ( ( x. |` ( X X. Y ) ) ` u ) ) |
| 209 | 208 | ralrimiva | |- ( ph -> A. w e. Z E. u e. ( X X. Y ) w = ( ( x. |` ( X X. Y ) ) ` u ) ) |
| 210 | dffo3 | |- ( ( x. |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z <-> ( ( x. |` ( X X. Y ) ) : ( X X. Y ) --> Z /\ A. w e. Z E. u e. ( X X. Y ) w = ( ( x. |` ( X X. Y ) ) ` u ) ) ) |
|
| 211 | 58 209 210 | sylanbrc | |- ( ph -> ( x. |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z ) |
| 212 | df-f1o | |- ( ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z <-> ( ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-> Z /\ ( x. |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z ) ) |
|
| 213 | 158 211 212 | sylanbrc | |- ( ph -> ( x. |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z ) |